F. Dhainaut, R. Dabadie, B. Martel, T. Desrues, M. Albaric, O. Palais, S. Dubois, S. Harrison
{"title":"铺瓦式多晶硅/氧化硅钝化接触太阳能电池的边缘钝化","authors":"F. Dhainaut, R. Dabadie, B. Martel, T. Desrues, M. Albaric, O. Palais, S. Dubois, S. Harrison","doi":"10.1051/epjpv/2023013","DOIUrl":null,"url":null,"abstract":"This work aims at the full recovery of efficiency losses induced by shingling double-side poly-Si/SiOx passivated contacts crystalline silicon solar cells. It focuses on thermally-activated Aluminium Oxide (AlOx) layers elaborated by thermal Atomic Layer Deposition (ALD) to passivate the edges of shingled cells cut by using the innovative “45° tilt squaring approach”. The whole procedure featuring high-temperature AlOx annealing led to very low cut-related performance losses. Indeed, the efficiency and FF of the passivated shingled cells surpassed the values obtained for the as-cut shingles by 0.5%abs and 2.6%abs, respectively. Approaches for further improvements are also discussed, particularly to overcome the short-circuit current density decrease observed for passivated shingles.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge passivation of shingled poly-Si/SiOx passivated contacts solar cells\",\"authors\":\"F. Dhainaut, R. Dabadie, B. Martel, T. Desrues, M. Albaric, O. Palais, S. Dubois, S. Harrison\",\"doi\":\"10.1051/epjpv/2023013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims at the full recovery of efficiency losses induced by shingling double-side poly-Si/SiOx passivated contacts crystalline silicon solar cells. It focuses on thermally-activated Aluminium Oxide (AlOx) layers elaborated by thermal Atomic Layer Deposition (ALD) to passivate the edges of shingled cells cut by using the innovative “45° tilt squaring approach”. The whole procedure featuring high-temperature AlOx annealing led to very low cut-related performance losses. Indeed, the efficiency and FF of the passivated shingled cells surpassed the values obtained for the as-cut shingles by 0.5%abs and 2.6%abs, respectively. Approaches for further improvements are also discussed, particularly to overcome the short-circuit current density decrease observed for passivated shingles.\",\"PeriodicalId\":42768,\"journal\":{\"name\":\"EPJ Photovoltaics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Photovoltaics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjpv/2023013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2023013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Edge passivation of shingled poly-Si/SiOx passivated contacts solar cells
This work aims at the full recovery of efficiency losses induced by shingling double-side poly-Si/SiOx passivated contacts crystalline silicon solar cells. It focuses on thermally-activated Aluminium Oxide (AlOx) layers elaborated by thermal Atomic Layer Deposition (ALD) to passivate the edges of shingled cells cut by using the innovative “45° tilt squaring approach”. The whole procedure featuring high-temperature AlOx annealing led to very low cut-related performance losses. Indeed, the efficiency and FF of the passivated shingled cells surpassed the values obtained for the as-cut shingles by 0.5%abs and 2.6%abs, respectively. Approaches for further improvements are also discussed, particularly to overcome the short-circuit current density decrease observed for passivated shingles.