Malte Klitzke, J. Schön, R. H. van Leest, G. Bissels, E. Vlieg, M. Schachtner, F. Dimroth, D. Lackner
{"title":"用于空间应用的超轻柔性倒变质四结太阳能电池","authors":"Malte Klitzke, J. Schön, R. H. van Leest, G. Bissels, E. Vlieg, M. Schachtner, F. Dimroth, D. Lackner","doi":"10.1051/epjpv/2022024","DOIUrl":null,"url":null,"abstract":"In this work an inverted metamorphic four junction (IMM4J) solar cell with 30.9% conversion efficiency in beginning of life conditions under the AM0 (1367 W/m2) spectrum is presented. Additionally, our newest improved IMM3J cell, consisting of Ga0.51In0.49P/GaAs/Ga0.73In0.27As subcells, with 30.6% efficiency is also shown. The IMM4J solar cells consist of Al0.05Ga0.46In0.49P/Al0.14Ga0.86As/Ga0.89In0.11As/Ga0.73In0.27As subcells and are epitaxially grown by metal organic vapor phase epitaxy (MOVPE) on a GaAs substrate. These IMM solar cells achieve power-to-mass ratios of 3 W/g or more, which is more than three times higher than standard germanium based triple or four junction space solar cells. The losses in comparison to the simulated near-term potential efficiency of 33.8% for the IMM4J are analyzed in detail. Furthermore, the irradiation behavior for 1 MeV electron fluences of 1 × 1014 e−/cm2 and 2.5 × 1014 e−/cm2 for the IMM4J cells was investigated. A roadmap to further develop this concept towards an IMM5J with a realistic begin of life (BOL) efficiency potential of 35.9% under AM0 is presented.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ultra-lightweight and flexible inverted metamorphic four junction solar cells for space applications\",\"authors\":\"Malte Klitzke, J. Schön, R. H. van Leest, G. Bissels, E. Vlieg, M. Schachtner, F. Dimroth, D. Lackner\",\"doi\":\"10.1051/epjpv/2022024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work an inverted metamorphic four junction (IMM4J) solar cell with 30.9% conversion efficiency in beginning of life conditions under the AM0 (1367 W/m2) spectrum is presented. Additionally, our newest improved IMM3J cell, consisting of Ga0.51In0.49P/GaAs/Ga0.73In0.27As subcells, with 30.6% efficiency is also shown. The IMM4J solar cells consist of Al0.05Ga0.46In0.49P/Al0.14Ga0.86As/Ga0.89In0.11As/Ga0.73In0.27As subcells and are epitaxially grown by metal organic vapor phase epitaxy (MOVPE) on a GaAs substrate. These IMM solar cells achieve power-to-mass ratios of 3 W/g or more, which is more than three times higher than standard germanium based triple or four junction space solar cells. The losses in comparison to the simulated near-term potential efficiency of 33.8% for the IMM4J are analyzed in detail. Furthermore, the irradiation behavior for 1 MeV electron fluences of 1 × 1014 e−/cm2 and 2.5 × 1014 e−/cm2 for the IMM4J cells was investigated. A roadmap to further develop this concept towards an IMM5J with a realistic begin of life (BOL) efficiency potential of 35.9% under AM0 is presented.\",\"PeriodicalId\":42768,\"journal\":{\"name\":\"EPJ Photovoltaics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Photovoltaics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjpv/2022024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2022024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Ultra-lightweight and flexible inverted metamorphic four junction solar cells for space applications
In this work an inverted metamorphic four junction (IMM4J) solar cell with 30.9% conversion efficiency in beginning of life conditions under the AM0 (1367 W/m2) spectrum is presented. Additionally, our newest improved IMM3J cell, consisting of Ga0.51In0.49P/GaAs/Ga0.73In0.27As subcells, with 30.6% efficiency is also shown. The IMM4J solar cells consist of Al0.05Ga0.46In0.49P/Al0.14Ga0.86As/Ga0.89In0.11As/Ga0.73In0.27As subcells and are epitaxially grown by metal organic vapor phase epitaxy (MOVPE) on a GaAs substrate. These IMM solar cells achieve power-to-mass ratios of 3 W/g or more, which is more than three times higher than standard germanium based triple or four junction space solar cells. The losses in comparison to the simulated near-term potential efficiency of 33.8% for the IMM4J are analyzed in detail. Furthermore, the irradiation behavior for 1 MeV electron fluences of 1 × 1014 e−/cm2 and 2.5 × 1014 e−/cm2 for the IMM4J cells was investigated. A roadmap to further develop this concept towards an IMM5J with a realistic begin of life (BOL) efficiency potential of 35.9% under AM0 is presented.