A. Desthieux, J. Posada, P. Grand, C. Broussillou, B. Bazer-Bachi, G. Goaer, Davina Messou, M. Bouttemy, E. Drahi, P. Cabarrocas
{"title":"PECVD μc-Si:H沉积对钝化触头隧道氧化物的影响","authors":"A. Desthieux, J. Posada, P. Grand, C. Broussillou, B. Bazer-Bachi, G. Goaer, Davina Messou, M. Bouttemy, E. Drahi, P. Cabarrocas","doi":"10.1051/epjpv/2020001","DOIUrl":null,"url":null,"abstract":"Passivating contacts are becoming a mainstream option in current photovoltaic industry due to their ability to provide an outstanding surface passivation along with a good conductivity for carrier collection. However, their integration usually requires long annealing steps which are not desirable in industry. In this work we study PECVD as a way to carry out all deposition steps: silicon oxide (SiOx), doped polycrystalline silicon (poly-Si) and silicon nitride (SiNx:H), followed by a single firing step. Blistering of the poly-Si layer has been avoided by depositing (p+) microcrystalline silicon (μc-Si:H). We report on the impact of this deposition step on the SiOx layer deposited by PECVD, and on the passivation properties by comparing PECVD and wet-chemical oxide in this hole-selective passivating contact stack. We have reached iVoc > 690 mV on p-type FZ wafers for wet-chemical SiOx\\(p+) μc-Si\\SiNx:H with no annealing step.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/epjpv/2020001","citationCount":"2","resultStr":"{\"title\":\"Impact of PECVD μc-Si:H deposition on tunnel oxide for passivating contacts\",\"authors\":\"A. Desthieux, J. Posada, P. Grand, C. Broussillou, B. Bazer-Bachi, G. Goaer, Davina Messou, M. Bouttemy, E. Drahi, P. Cabarrocas\",\"doi\":\"10.1051/epjpv/2020001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passivating contacts are becoming a mainstream option in current photovoltaic industry due to their ability to provide an outstanding surface passivation along with a good conductivity for carrier collection. However, their integration usually requires long annealing steps which are not desirable in industry. In this work we study PECVD as a way to carry out all deposition steps: silicon oxide (SiOx), doped polycrystalline silicon (poly-Si) and silicon nitride (SiNx:H), followed by a single firing step. Blistering of the poly-Si layer has been avoided by depositing (p+) microcrystalline silicon (μc-Si:H). We report on the impact of this deposition step on the SiOx layer deposited by PECVD, and on the passivation properties by comparing PECVD and wet-chemical oxide in this hole-selective passivating contact stack. We have reached iVoc > 690 mV on p-type FZ wafers for wet-chemical SiOx\\\\(p+) μc-Si\\\\SiNx:H with no annealing step.\",\"PeriodicalId\":42768,\"journal\":{\"name\":\"EPJ Photovoltaics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/epjpv/2020001\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Photovoltaics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjpv/2020001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2020001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Impact of PECVD μc-Si:H deposition on tunnel oxide for passivating contacts
Passivating contacts are becoming a mainstream option in current photovoltaic industry due to their ability to provide an outstanding surface passivation along with a good conductivity for carrier collection. However, their integration usually requires long annealing steps which are not desirable in industry. In this work we study PECVD as a way to carry out all deposition steps: silicon oxide (SiOx), doped polycrystalline silicon (poly-Si) and silicon nitride (SiNx:H), followed by a single firing step. Blistering of the poly-Si layer has been avoided by depositing (p+) microcrystalline silicon (μc-Si:H). We report on the impact of this deposition step on the SiOx layer deposited by PECVD, and on the passivation properties by comparing PECVD and wet-chemical oxide in this hole-selective passivating contact stack. We have reached iVoc > 690 mV on p-type FZ wafers for wet-chemical SiOx\(p+) μc-Si\SiNx:H with no annealing step.