S. Bourg, A. Geist, J. Adnet, C. Rhodes, B. Hanson
{"title":"核乏燃料分区与嬗变策略研发:SACSESS与genors项目","authors":"S. Bourg, A. Geist, J. Adnet, C. Rhodes, B. Hanson","doi":"10.1051/epjn/2019009","DOIUrl":null,"url":null,"abstract":"Processes such as PUREX allow the recovery and reuse of the uranium and the plutonium of GEN II/GEN III reactors and are being adapted for the recycling of the uranium and the plutonium of GEN IV MOX fuels. However, it does not fix the sensitive issue of the long-term management of the high active nuclear waste (HAW). Indeed, only the recovery and the transmutation of the minor actinides can reduce this burden down to a few hundreds of years. In this context, and in the continuity of the FP7 EURATOM SACSESS project, GENIORS focuses on the reprocessing of MOX fuel containing minor actinides, taking into account safety issues under normal and mal-operation. By implementing a three-step approach (reinforcement of the scientific knowledge => process development and testing => system studies, safety and integration), GENIORS will provide more science-based strategies for nuclear fuel management in the EU.","PeriodicalId":44454,"journal":{"name":"EPJ Nuclear Sciences & Technologies","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/epjn/2019009","citationCount":"13","resultStr":"{\"title\":\"Partitioning and transmutation strategy R&D for nuclear spent fuel: the SACSESS and GENIORS projects\",\"authors\":\"S. Bourg, A. Geist, J. Adnet, C. Rhodes, B. Hanson\",\"doi\":\"10.1051/epjn/2019009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processes such as PUREX allow the recovery and reuse of the uranium and the plutonium of GEN II/GEN III reactors and are being adapted for the recycling of the uranium and the plutonium of GEN IV MOX fuels. However, it does not fix the sensitive issue of the long-term management of the high active nuclear waste (HAW). Indeed, only the recovery and the transmutation of the minor actinides can reduce this burden down to a few hundreds of years. In this context, and in the continuity of the FP7 EURATOM SACSESS project, GENIORS focuses on the reprocessing of MOX fuel containing minor actinides, taking into account safety issues under normal and mal-operation. By implementing a three-step approach (reinforcement of the scientific knowledge => process development and testing => system studies, safety and integration), GENIORS will provide more science-based strategies for nuclear fuel management in the EU.\",\"PeriodicalId\":44454,\"journal\":{\"name\":\"EPJ Nuclear Sciences & Technologies\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/epjn/2019009\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Nuclear Sciences & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjn/2019009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Nuclear Sciences & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjn/2019009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Partitioning and transmutation strategy R&D for nuclear spent fuel: the SACSESS and GENIORS projects
Processes such as PUREX allow the recovery and reuse of the uranium and the plutonium of GEN II/GEN III reactors and are being adapted for the recycling of the uranium and the plutonium of GEN IV MOX fuels. However, it does not fix the sensitive issue of the long-term management of the high active nuclear waste (HAW). Indeed, only the recovery and the transmutation of the minor actinides can reduce this burden down to a few hundreds of years. In this context, and in the continuity of the FP7 EURATOM SACSESS project, GENIORS focuses on the reprocessing of MOX fuel containing minor actinides, taking into account safety issues under normal and mal-operation. By implementing a three-step approach (reinforcement of the scientific knowledge => process development and testing => system studies, safety and integration), GENIORS will provide more science-based strategies for nuclear fuel management in the EU.