{"title":"包括双各向同性和超材料层在内的纳米谐振器的反射和传输:控制和放大纳米光子学应用中的手性和非互反效应的机会","authors":"E. Starodubtsev","doi":"10.1051/epjam/2023002","DOIUrl":null,"url":null,"abstract":"Electromagnetic waves reflected from and transmitted through the multilayer nanoresonators including the main layer made of a bi-isotropic material or metamaterial sandwiched between dielectric, epsilon-near-zero or metallic spacer layers have been analytically modeled. The numerical and graphical analysis, based on the exact solution of the electromagnetic boundary problem, confirms opportunities to use such nanoresonators as utracompact polarization converters. The proposed systems are characterized by wide ranges of parameters and significantly reduced (subwavelength) thicknesses. The spacer layers can provide modification, control, and amplification of chiral and nonreciprocal effects for the reflected and transmitted radiation. The concept can be realized for various geometries of dielectric, epsilon-near-zero, metallic, bi-isotropic, metamaterial layers and used to develop new ultrathin, large area, and relatively easy-to-manufacture polarization and other devices for nanophotonics.","PeriodicalId":43689,"journal":{"name":"EPJ Applied Metamaterials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reflection and transmission of nanoresonators including bi-isotropic and metamaterial layers: opportunities to control and amplify chiral and nonreciprocal effects for nanophotonics applications\",\"authors\":\"E. Starodubtsev\",\"doi\":\"10.1051/epjam/2023002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic waves reflected from and transmitted through the multilayer nanoresonators including the main layer made of a bi-isotropic material or metamaterial sandwiched between dielectric, epsilon-near-zero or metallic spacer layers have been analytically modeled. The numerical and graphical analysis, based on the exact solution of the electromagnetic boundary problem, confirms opportunities to use such nanoresonators as utracompact polarization converters. The proposed systems are characterized by wide ranges of parameters and significantly reduced (subwavelength) thicknesses. The spacer layers can provide modification, control, and amplification of chiral and nonreciprocal effects for the reflected and transmitted radiation. The concept can be realized for various geometries of dielectric, epsilon-near-zero, metallic, bi-isotropic, metamaterial layers and used to develop new ultrathin, large area, and relatively easy-to-manufacture polarization and other devices for nanophotonics.\",\"PeriodicalId\":43689,\"journal\":{\"name\":\"EPJ Applied Metamaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Applied Metamaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjam/2023002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Applied Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjam/2023002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Reflection and transmission of nanoresonators including bi-isotropic and metamaterial layers: opportunities to control and amplify chiral and nonreciprocal effects for nanophotonics applications
Electromagnetic waves reflected from and transmitted through the multilayer nanoresonators including the main layer made of a bi-isotropic material or metamaterial sandwiched between dielectric, epsilon-near-zero or metallic spacer layers have been analytically modeled. The numerical and graphical analysis, based on the exact solution of the electromagnetic boundary problem, confirms opportunities to use such nanoresonators as utracompact polarization converters. The proposed systems are characterized by wide ranges of parameters and significantly reduced (subwavelength) thicknesses. The spacer layers can provide modification, control, and amplification of chiral and nonreciprocal effects for the reflected and transmitted radiation. The concept can be realized for various geometries of dielectric, epsilon-near-zero, metallic, bi-isotropic, metamaterial layers and used to develop new ultrathin, large area, and relatively easy-to-manufacture polarization and other devices for nanophotonics.