Shohreh Nourinovin, SaeJune Park, Q. Abbasi, A. Alomainy
{"title":"一种基于非对称谐振腔的超薄柔性太赫兹电磁诱导透明超表面","authors":"Shohreh Nourinovin, SaeJune Park, Q. Abbasi, A. Alomainy","doi":"10.1051/epjam/2023001","DOIUrl":null,"url":null,"abstract":"Terahertz (THz) electromagnetically induced transparency-like (EIT-like) metasurfaces have been extensively explored and frequently used for sensing, switching, slow light, and enhanced nonlinear effects. Reducing radiation and non-radiation losses in EIT-like systems contributes to increased electromagnetic (EM) field confinement, higher transmission peak magnitude, and Q-factor. This can be accomplished by the use of proper dielectric properties and engineering novel designs. Therefore, we fabricated a THz EIT-like metasurface based on asymmetric metallic resonators on an ultra-thin and flexible dielectric substrate. Because the quadruple mode is stimulated in a closed loop, an anti-parallel surface current forms, producing a transparency window with a transmission peak magnitude of 0.8 at 1.96 THz. To control the growing trend of EIT-like resonance, the structure was designed with four asymmetry levels. The effect of the substrate on the resonance response was also explored, and we demonstrated experimentally how the ultra-thin substrate and the metasurface asymmetric novel pattern contributed to higher transmission and lower loss.","PeriodicalId":43689,"journal":{"name":"EPJ Applied Metamaterials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ultrathin and flexible terahertz electromagnetically induced transparency-like metasurface based on asymmetric resonators\",\"authors\":\"Shohreh Nourinovin, SaeJune Park, Q. Abbasi, A. Alomainy\",\"doi\":\"10.1051/epjam/2023001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terahertz (THz) electromagnetically induced transparency-like (EIT-like) metasurfaces have been extensively explored and frequently used for sensing, switching, slow light, and enhanced nonlinear effects. Reducing radiation and non-radiation losses in EIT-like systems contributes to increased electromagnetic (EM) field confinement, higher transmission peak magnitude, and Q-factor. This can be accomplished by the use of proper dielectric properties and engineering novel designs. Therefore, we fabricated a THz EIT-like metasurface based on asymmetric metallic resonators on an ultra-thin and flexible dielectric substrate. Because the quadruple mode is stimulated in a closed loop, an anti-parallel surface current forms, producing a transparency window with a transmission peak magnitude of 0.8 at 1.96 THz. To control the growing trend of EIT-like resonance, the structure was designed with four asymmetry levels. The effect of the substrate on the resonance response was also explored, and we demonstrated experimentally how the ultra-thin substrate and the metasurface asymmetric novel pattern contributed to higher transmission and lower loss.\",\"PeriodicalId\":43689,\"journal\":{\"name\":\"EPJ Applied Metamaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Applied Metamaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjam/2023001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Applied Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjam/2023001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
An ultrathin and flexible terahertz electromagnetically induced transparency-like metasurface based on asymmetric resonators
Terahertz (THz) electromagnetically induced transparency-like (EIT-like) metasurfaces have been extensively explored and frequently used for sensing, switching, slow light, and enhanced nonlinear effects. Reducing radiation and non-radiation losses in EIT-like systems contributes to increased electromagnetic (EM) field confinement, higher transmission peak magnitude, and Q-factor. This can be accomplished by the use of proper dielectric properties and engineering novel designs. Therefore, we fabricated a THz EIT-like metasurface based on asymmetric metallic resonators on an ultra-thin and flexible dielectric substrate. Because the quadruple mode is stimulated in a closed loop, an anti-parallel surface current forms, producing a transparency window with a transmission peak magnitude of 0.8 at 1.96 THz. To control the growing trend of EIT-like resonance, the structure was designed with four asymmetry levels. The effect of the substrate on the resonance response was also explored, and we demonstrated experimentally how the ultra-thin substrate and the metasurface asymmetric novel pattern contributed to higher transmission and lower loss.