{"title":"热扩散器的超材料模拟","authors":"Luis Alfonso Nuñez-Betancourt, J. Matutes-Aquino","doi":"10.1051/epjam/2022017","DOIUrl":null,"url":null,"abstract":"The heat extraction efficiency of a cylindrical diffuser can be optimized by applying differential geometry [J.-P. Huang, Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Springer, 2020)], in order to find a metamaterial design. That can be done by coupling a thermally insulating material (polytetrafluoroethylene) with a high thermal conductivity material (copper) where the heat flow is directed. By controlling the distance between the isothermal contours, to extract the heat while maintaining a constant temperature gradient along the diffuser avoiding heat accumulation.","PeriodicalId":43689,"journal":{"name":"EPJ Applied Metamaterials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metamaterials simulation for thermal diffusers\",\"authors\":\"Luis Alfonso Nuñez-Betancourt, J. Matutes-Aquino\",\"doi\":\"10.1051/epjam/2022017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heat extraction efficiency of a cylindrical diffuser can be optimized by applying differential geometry [J.-P. Huang, Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Springer, 2020)], in order to find a metamaterial design. That can be done by coupling a thermally insulating material (polytetrafluoroethylene) with a high thermal conductivity material (copper) where the heat flow is directed. By controlling the distance between the isothermal contours, to extract the heat while maintaining a constant temperature gradient along the diffuser avoiding heat accumulation.\",\"PeriodicalId\":43689,\"journal\":{\"name\":\"EPJ Applied Metamaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Applied Metamaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjam/2022017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Applied Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjam/2022017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The heat extraction efficiency of a cylindrical diffuser can be optimized by applying differential geometry [J.-P. Huang, Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Springer, 2020)], in order to find a metamaterial design. That can be done by coupling a thermally insulating material (polytetrafluoroethylene) with a high thermal conductivity material (copper) where the heat flow is directed. By controlling the distance between the isothermal contours, to extract the heat while maintaining a constant temperature gradient along the diffuser avoiding heat accumulation.