{"title":"FFT, DA和Mori-Tanaka近似确定随机夹杂三相复合材料的弹性模量","authors":"V. Nguyen","doi":"10.1051/epjam/2022007","DOIUrl":null,"url":null,"abstract":"In this work, some solutions such as Mori-Tanaka approximation (MTA), Differential approximations (DA), and Fast Fourier transformation method (FFT) were applied to estimate the elastic bulk and shear modulus of three-phase composites in 2D. In which two different sizes of circular inclusions are arranged randomly non-overlapping in a continuous matrix. The numerical solutions using FFT analysis were compared with DA, MTA, and Hashin-Strikman's bounds. The MTA and DA reasonably agreeable solution with the FFT solution shows the effectiveness of the approximation methods, which makes MTA, DA useful with simplicity and ease of application.","PeriodicalId":43689,"journal":{"name":"EPJ Applied Metamaterials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FFT, DA, and Mori-Tanaka approximation to determine the elastic moduli of three-phase composites with the random inclusions\",\"authors\":\"V. Nguyen\",\"doi\":\"10.1051/epjam/2022007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, some solutions such as Mori-Tanaka approximation (MTA), Differential approximations (DA), and Fast Fourier transformation method (FFT) were applied to estimate the elastic bulk and shear modulus of three-phase composites in 2D. In which two different sizes of circular inclusions are arranged randomly non-overlapping in a continuous matrix. The numerical solutions using FFT analysis were compared with DA, MTA, and Hashin-Strikman's bounds. The MTA and DA reasonably agreeable solution with the FFT solution shows the effectiveness of the approximation methods, which makes MTA, DA useful with simplicity and ease of application.\",\"PeriodicalId\":43689,\"journal\":{\"name\":\"EPJ Applied Metamaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Applied Metamaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjam/2022007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Applied Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjam/2022007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
FFT, DA, and Mori-Tanaka approximation to determine the elastic moduli of three-phase composites with the random inclusions
In this work, some solutions such as Mori-Tanaka approximation (MTA), Differential approximations (DA), and Fast Fourier transformation method (FFT) were applied to estimate the elastic bulk and shear modulus of three-phase composites in 2D. In which two different sizes of circular inclusions are arranged randomly non-overlapping in a continuous matrix. The numerical solutions using FFT analysis were compared with DA, MTA, and Hashin-Strikman's bounds. The MTA and DA reasonably agreeable solution with the FFT solution shows the effectiveness of the approximation methods, which makes MTA, DA useful with simplicity and ease of application.