用于增强和定向散射现象的有源涂层纳米棒天线

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. Arslanagić, R. E. Jacobsen
{"title":"用于增强和定向散射现象的有源涂层纳米棒天线","authors":"S. Arslanagić, R. E. Jacobsen","doi":"10.1051/epjam/2019016","DOIUrl":null,"url":null,"abstract":"The scattering properties of a range of symmetric and asymmetric active coated nano rod antennas are investigated numerically. The active nano rods are composed of a silica dioxide nano-core coated with a silver nano-shell, and with a canonical gain model implemented into their nano-core regions. The asymmetric nano rods are obtained through suitable perforations of their nano-shell and/or nano-core regions. In all cases, active nano rods are found to exhibit super-resonant phenomena with significantly enhanced scattered fields for an incident plane wave having the magnetic field parallel to the rod axis. While the dipole-mode response in the symmetric cases is only weakly directive, the asymmetric cases stimulate an abundant emission of higher order modes furnishing rather enhanced and directive near-fields. As the length of the symmetric nano rods decreases, more gain is needed to achieve a super-resonant response, which also was found to be blue-shifted. For asymmetric cases, the gain was lowered, and the response got blue-shifted as the asymmetry increased. The proposed active nano rod antennas provide a new class of antennas with desirable wavelength tunability and polarization-dependent scattering properties; this makes them interesting candidates for many nano-photonic applications. Moreover, the proposed geometries bridge the important gap between the two often considered canonical geometries, namely, spherical and infinitely long cylindrical particles. The detailed knowledge of gain values and resonant wavelengths provided in here is crucial for a successful combination of such particles with realistic gain materials.","PeriodicalId":43689,"journal":{"name":"EPJ Applied Metamaterials","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/epjam/2019016","citationCount":"1","resultStr":"{\"title\":\"Active coated nano rod antennas for enhanced and directive scattering phenomena\",\"authors\":\"S. Arslanagić, R. E. Jacobsen\",\"doi\":\"10.1051/epjam/2019016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scattering properties of a range of symmetric and asymmetric active coated nano rod antennas are investigated numerically. The active nano rods are composed of a silica dioxide nano-core coated with a silver nano-shell, and with a canonical gain model implemented into their nano-core regions. The asymmetric nano rods are obtained through suitable perforations of their nano-shell and/or nano-core regions. In all cases, active nano rods are found to exhibit super-resonant phenomena with significantly enhanced scattered fields for an incident plane wave having the magnetic field parallel to the rod axis. While the dipole-mode response in the symmetric cases is only weakly directive, the asymmetric cases stimulate an abundant emission of higher order modes furnishing rather enhanced and directive near-fields. As the length of the symmetric nano rods decreases, more gain is needed to achieve a super-resonant response, which also was found to be blue-shifted. For asymmetric cases, the gain was lowered, and the response got blue-shifted as the asymmetry increased. The proposed active nano rod antennas provide a new class of antennas with desirable wavelength tunability and polarization-dependent scattering properties; this makes them interesting candidates for many nano-photonic applications. Moreover, the proposed geometries bridge the important gap between the two often considered canonical geometries, namely, spherical and infinitely long cylindrical particles. The detailed knowledge of gain values and resonant wavelengths provided in here is crucial for a successful combination of such particles with realistic gain materials.\",\"PeriodicalId\":43689,\"journal\":{\"name\":\"EPJ Applied Metamaterials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/epjam/2019016\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Applied Metamaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjam/2019016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Applied Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjam/2019016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

对对称和非对称有源涂层纳米棒天线的散射特性进行了数值研究。活性纳米棒由包裹有银纳米外壳的二氧化硅纳米核组成,并在其纳米核区域实现正则增益模型。不对称纳米棒是通过在其纳米壳和/或纳米核区域进行适当的穿孔而获得的。在所有情况下,发现有源纳米棒都表现出超共振现象,当入射平面波具有平行于棒轴的磁场时,其散射场显著增强。对称情况下的偶极子模响应只有弱指向性,而非对称情况下激发了大量高阶模的发射,提供了相当增强和指向性的近场。随着对称纳米棒长度的减小,需要更多的增益来实现超谐振响应,这也被发现是蓝移的。对于不对称的情况,增益降低,响应随着不对称的增加而发生蓝移。所提出的有源纳米棒天线提供了一种具有良好波长可调性和极化相关散射特性的新型天线;这使它们成为许多纳米光子应用的有趣候选者。此外,所提出的几何形状弥合了两种通常被认为是典型几何形状(即球形和无限长圆柱形粒子)之间的重要差距。这里提供的增益值和共振波长的详细知识对于成功地将此类粒子与实际增益材料结合在一起至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active coated nano rod antennas for enhanced and directive scattering phenomena
The scattering properties of a range of symmetric and asymmetric active coated nano rod antennas are investigated numerically. The active nano rods are composed of a silica dioxide nano-core coated with a silver nano-shell, and with a canonical gain model implemented into their nano-core regions. The asymmetric nano rods are obtained through suitable perforations of their nano-shell and/or nano-core regions. In all cases, active nano rods are found to exhibit super-resonant phenomena with significantly enhanced scattered fields for an incident plane wave having the magnetic field parallel to the rod axis. While the dipole-mode response in the symmetric cases is only weakly directive, the asymmetric cases stimulate an abundant emission of higher order modes furnishing rather enhanced and directive near-fields. As the length of the symmetric nano rods decreases, more gain is needed to achieve a super-resonant response, which also was found to be blue-shifted. For asymmetric cases, the gain was lowered, and the response got blue-shifted as the asymmetry increased. The proposed active nano rod antennas provide a new class of antennas with desirable wavelength tunability and polarization-dependent scattering properties; this makes them interesting candidates for many nano-photonic applications. Moreover, the proposed geometries bridge the important gap between the two often considered canonical geometries, namely, spherical and infinitely long cylindrical particles. The detailed knowledge of gain values and resonant wavelengths provided in here is crucial for a successful combination of such particles with realistic gain materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Applied Metamaterials
EPJ Applied Metamaterials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
6.20%
发文量
16
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信