基于表面阻抗边界条件的超表面非周期天线时域有限差分建模

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
T. Uno, T. Arima, Akihide Kurahara
{"title":"基于表面阻抗边界条件的超表面非周期天线时域有限差分建模","authors":"T. Uno, T. Arima, Akihide Kurahara","doi":"10.1051/EPJAM/2019014","DOIUrl":null,"url":null,"abstract":"This paper investigates an FDTD modeling method for precisely calculating the characteristics of a single, that is, a nonperiodic antenna located above a metasurface that consists of an infinite periodic conducting element on a flat dielectric substrate. The original FDTD method requires enormous computational resources to analyze such structures because an appropriate periodic boundary condition (PBC) is not supported, and a brute force approach has to be used for this reason. Another option is to use the array scanning method in which a single source is synthesized from a superposition of infinite phased array of point sources. In this method, some problems such as a mutual coupling between the single antenna and the metasurface, a computational error contained in a numerical integration over the Brillouin zone and so on have not been resolved yet. In order to resolve these difficulties and to reduce computational resources, a surface impedance boundary condition (SIBC) is incorporated into the FDTD method in this paper. The validity of the method is numerically confirmed by calculating an input impedance and a radiation pattern of a horizontal dipole antenna located above the metasurface.","PeriodicalId":43689,"journal":{"name":"EPJ Applied Metamaterials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/EPJAM/2019014","citationCount":"2","resultStr":"{\"title\":\"FDTD modeling of nonperiodic antenna located above metasurface using surface impedance boundary condition\",\"authors\":\"T. Uno, T. Arima, Akihide Kurahara\",\"doi\":\"10.1051/EPJAM/2019014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates an FDTD modeling method for precisely calculating the characteristics of a single, that is, a nonperiodic antenna located above a metasurface that consists of an infinite periodic conducting element on a flat dielectric substrate. The original FDTD method requires enormous computational resources to analyze such structures because an appropriate periodic boundary condition (PBC) is not supported, and a brute force approach has to be used for this reason. Another option is to use the array scanning method in which a single source is synthesized from a superposition of infinite phased array of point sources. In this method, some problems such as a mutual coupling between the single antenna and the metasurface, a computational error contained in a numerical integration over the Brillouin zone and so on have not been resolved yet. In order to resolve these difficulties and to reduce computational resources, a surface impedance boundary condition (SIBC) is incorporated into the FDTD method in this paper. The validity of the method is numerically confirmed by calculating an input impedance and a radiation pattern of a horizontal dipole antenna located above the metasurface.\",\"PeriodicalId\":43689,\"journal\":{\"name\":\"EPJ Applied Metamaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/EPJAM/2019014\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Applied Metamaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/EPJAM/2019014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Applied Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/EPJAM/2019014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一种时域有限差分(FDTD)建模方法,用于精确计算单个天线的特性,即位于由平坦介质衬底上的无限周期导电元件组成的超表面上的非周期天线。由于不支持适当的周期边界条件(PBC),原始的FDTD方法需要大量的计算资源来分析这种结构,因此必须使用蛮力方法。另一种选择是使用由无限相控阵点源叠加合成单一源的阵列扫描方法。在该方法中,单天线与超表面之间的相互耦合、布里渊区数值积分中的计算误差等问题尚未得到解决。为了解决这些困难并减少计算量,本文在时域有限差分法中引入了表面阻抗边界条件(SIBC)。通过计算位于超表面上方的水平偶极子天线的输入阻抗和辐射方向图,数值验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FDTD modeling of nonperiodic antenna located above metasurface using surface impedance boundary condition
This paper investigates an FDTD modeling method for precisely calculating the characteristics of a single, that is, a nonperiodic antenna located above a metasurface that consists of an infinite periodic conducting element on a flat dielectric substrate. The original FDTD method requires enormous computational resources to analyze such structures because an appropriate periodic boundary condition (PBC) is not supported, and a brute force approach has to be used for this reason. Another option is to use the array scanning method in which a single source is synthesized from a superposition of infinite phased array of point sources. In this method, some problems such as a mutual coupling between the single antenna and the metasurface, a computational error contained in a numerical integration over the Brillouin zone and so on have not been resolved yet. In order to resolve these difficulties and to reduce computational resources, a surface impedance boundary condition (SIBC) is incorporated into the FDTD method in this paper. The validity of the method is numerically confirmed by calculating an input impedance and a radiation pattern of a horizontal dipole antenna located above the metasurface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Applied Metamaterials
EPJ Applied Metamaterials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
6.20%
发文量
16
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信