四水合甲酸铜单晶脱水动力学

Peter M. Fichte, T. Flanagan
{"title":"四水合甲酸铜单晶脱水动力学","authors":"Peter M. Fichte, T. Flanagan","doi":"10.1039/TF9716701467","DOIUrl":null,"url":null,"abstract":"Reproducible kinetic data for the dehydration of individual single crystals of copper formate tetrahydrate have been obtained from –45° to +25°C in vacuo. Although structural studies suggest the presence of two differently coordinated types of water molecule, all of the water molecules behave identically with respect to their kinetics of dehydration. The reactant/product interface penetrates into the crystal at a constant rate in only the two dimensions parallel to the planes (001) which contain the copper and formate ions. A two-dimensional contracting envelope equation describes the α(fraction dehydration) against time curves. The energy of activation, 11.2 ± 0.2 kcal/mol H2O, for penetration of the interface is less than the overall heat of dissociation, 12.5 kcal/mol H2O. The kinetics of dehydration are unaffected by an antiferroelectric transition at –37.7°C. The inhibition of the dehydration process by water vapour has been examined and discussed quantitatively.","PeriodicalId":23290,"journal":{"name":"Transactions of The Faraday Society","volume":"67 1","pages":"1467-1479"},"PeriodicalIF":0.0000,"publicationDate":"1971-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/TF9716701467","citationCount":"17","resultStr":"{\"title\":\"Kinetics of dehydration of single crystals of copper formate tetrahydrate\",\"authors\":\"Peter M. Fichte, T. Flanagan\",\"doi\":\"10.1039/TF9716701467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reproducible kinetic data for the dehydration of individual single crystals of copper formate tetrahydrate have been obtained from –45° to +25°C in vacuo. Although structural studies suggest the presence of two differently coordinated types of water molecule, all of the water molecules behave identically with respect to their kinetics of dehydration. The reactant/product interface penetrates into the crystal at a constant rate in only the two dimensions parallel to the planes (001) which contain the copper and formate ions. A two-dimensional contracting envelope equation describes the α(fraction dehydration) against time curves. The energy of activation, 11.2 ± 0.2 kcal/mol H2O, for penetration of the interface is less than the overall heat of dissociation, 12.5 kcal/mol H2O. The kinetics of dehydration are unaffected by an antiferroelectric transition at –37.7°C. The inhibition of the dehydration process by water vapour has been examined and discussed quantitatively.\",\"PeriodicalId\":23290,\"journal\":{\"name\":\"Transactions of The Faraday Society\",\"volume\":\"67 1\",\"pages\":\"1467-1479\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1971-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1039/TF9716701467\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Faraday Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/TF9716701467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Faraday Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/TF9716701467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在-45°~ +25°C的真空条件下,获得了四水合甲酸铜单晶脱水的可重复动力学数据。尽管结构研究表明存在两种不同的协调类型的水分子,但所有的水分子在脱水动力学方面的行为是相同的。反应物/生成物界面仅在平行于含有铜和甲酸离子的平面(001)的两个维度上以恒定速率渗透到晶体中。二维收缩包络方程描述了α(分数脱水)随时间的变化曲线。穿透界面的活化能为11.2±0.2 kcal/mol H2O,小于总离解热12.5 kcal/mol H2O。脱水动力学不受-37.7℃反铁电跃迁的影响。对水蒸气对脱水过程的抑制作用进行了定量的考察和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinetics of dehydration of single crystals of copper formate tetrahydrate
Reproducible kinetic data for the dehydration of individual single crystals of copper formate tetrahydrate have been obtained from –45° to +25°C in vacuo. Although structural studies suggest the presence of two differently coordinated types of water molecule, all of the water molecules behave identically with respect to their kinetics of dehydration. The reactant/product interface penetrates into the crystal at a constant rate in only the two dimensions parallel to the planes (001) which contain the copper and formate ions. A two-dimensional contracting envelope equation describes the α(fraction dehydration) against time curves. The energy of activation, 11.2 ± 0.2 kcal/mol H2O, for penetration of the interface is less than the overall heat of dissociation, 12.5 kcal/mol H2O. The kinetics of dehydration are unaffected by an antiferroelectric transition at –37.7°C. The inhibition of the dehydration process by water vapour has been examined and discussed quantitatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信