P. Belotti, C. Kirches, S. Leyffer, Jeff T. Linderoth, James R. Luedtke, Ashutosh Mahajan
{"title":"混合整数非线性优化*†","authors":"P. Belotti, C. Kirches, S. Leyffer, Jeff T. Linderoth, James R. Luedtke, Ashutosh Mahajan","doi":"10.1017/S0962492913000032","DOIUrl":null,"url":null,"abstract":"Many optimal decision problems in scientific, engineering, and public sector applications involve both discrete decisions and nonlinear system dynamics that affect the quality of the final design or plan. These decision problems lead to mixed-integer nonlinear programming (MINLP) problems that combine the combinatorial difficulty of optimizing over discrete variable sets with the challenges of handling nonlinear functions. We review models and applications of MINLP, and survey the state of the art in methods for solving this challenging class of problems. Most solution methods for MINLP apply some form of tree search. We distinguish two broad classes of methods: single-tree and multitree methods. We discuss these two classes of methods first in the case where the underlying problem functions are convex. Classical single-tree methods include nonlinear branch-and-bound and branch-and-cut methods, while classical multitree methods include outer approximation and Benders decomposition. The most efficient class of methods for convex MINLP are hybrid methods that combine the strengths of both classes of classical techniques. Non-convex MINLPs pose additional challenges, because they contain non-convex functions in the objective function or the constraints; hence even when the integer variables are relaxed to be continuous, the feasible region is generally non-convex, resulting in many local minima. We discuss a range of approaches for tackling this challenging class of problems, including piecewise linear approximations, generic strategies for obtaining convex relaxations for non-convex functions, spatial branch-and-bound methods, and a small sample of techniques that exploit particular types of non-convex structures to obtain improved convex relaxations. We finish our survey with a brief discussion of three important aspects of MINLP. First, we review heuristic techniques that can obtain good feasible solution in situations where the search-tree has grown too large or we require real-time solutions. Second, we describe an emerging area of mixed-integer optimal control that adds systems of ordinary differential equations to MINLP. Third, we survey the state of the art in software for MINLP.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"22 1","pages":"1 - 131"},"PeriodicalIF":16.3000,"publicationDate":"2013-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0962492913000032","citationCount":"622","resultStr":"{\"title\":\"Mixed-integer nonlinear optimization*†\",\"authors\":\"P. Belotti, C. Kirches, S. Leyffer, Jeff T. Linderoth, James R. Luedtke, Ashutosh Mahajan\",\"doi\":\"10.1017/S0962492913000032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many optimal decision problems in scientific, engineering, and public sector applications involve both discrete decisions and nonlinear system dynamics that affect the quality of the final design or plan. These decision problems lead to mixed-integer nonlinear programming (MINLP) problems that combine the combinatorial difficulty of optimizing over discrete variable sets with the challenges of handling nonlinear functions. We review models and applications of MINLP, and survey the state of the art in methods for solving this challenging class of problems. Most solution methods for MINLP apply some form of tree search. We distinguish two broad classes of methods: single-tree and multitree methods. We discuss these two classes of methods first in the case where the underlying problem functions are convex. Classical single-tree methods include nonlinear branch-and-bound and branch-and-cut methods, while classical multitree methods include outer approximation and Benders decomposition. The most efficient class of methods for convex MINLP are hybrid methods that combine the strengths of both classes of classical techniques. Non-convex MINLPs pose additional challenges, because they contain non-convex functions in the objective function or the constraints; hence even when the integer variables are relaxed to be continuous, the feasible region is generally non-convex, resulting in many local minima. We discuss a range of approaches for tackling this challenging class of problems, including piecewise linear approximations, generic strategies for obtaining convex relaxations for non-convex functions, spatial branch-and-bound methods, and a small sample of techniques that exploit particular types of non-convex structures to obtain improved convex relaxations. We finish our survey with a brief discussion of three important aspects of MINLP. First, we review heuristic techniques that can obtain good feasible solution in situations where the search-tree has grown too large or we require real-time solutions. Second, we describe an emerging area of mixed-integer optimal control that adds systems of ordinary differential equations to MINLP. Third, we survey the state of the art in software for MINLP.\",\"PeriodicalId\":48863,\"journal\":{\"name\":\"Acta Numerica\",\"volume\":\"22 1\",\"pages\":\"1 - 131\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2013-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0962492913000032\",\"citationCount\":\"622\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Numerica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0962492913000032\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0962492913000032","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Many optimal decision problems in scientific, engineering, and public sector applications involve both discrete decisions and nonlinear system dynamics that affect the quality of the final design or plan. These decision problems lead to mixed-integer nonlinear programming (MINLP) problems that combine the combinatorial difficulty of optimizing over discrete variable sets with the challenges of handling nonlinear functions. We review models and applications of MINLP, and survey the state of the art in methods for solving this challenging class of problems. Most solution methods for MINLP apply some form of tree search. We distinguish two broad classes of methods: single-tree and multitree methods. We discuss these two classes of methods first in the case where the underlying problem functions are convex. Classical single-tree methods include nonlinear branch-and-bound and branch-and-cut methods, while classical multitree methods include outer approximation and Benders decomposition. The most efficient class of methods for convex MINLP are hybrid methods that combine the strengths of both classes of classical techniques. Non-convex MINLPs pose additional challenges, because they contain non-convex functions in the objective function or the constraints; hence even when the integer variables are relaxed to be continuous, the feasible region is generally non-convex, resulting in many local minima. We discuss a range of approaches for tackling this challenging class of problems, including piecewise linear approximations, generic strategies for obtaining convex relaxations for non-convex functions, spatial branch-and-bound methods, and a small sample of techniques that exploit particular types of non-convex structures to obtain improved convex relaxations. We finish our survey with a brief discussion of three important aspects of MINLP. First, we review heuristic techniques that can obtain good feasible solution in situations where the search-tree has grown too large or we require real-time solutions. Second, we describe an emerging area of mixed-integer optimal control that adds systems of ordinary differential equations to MINLP. Third, we survey the state of the art in software for MINLP.
期刊介绍:
Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses.
Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.