l1/核范数最小化的一阶算法

IF 16.3 1区 数学 Q1 MATHEMATICS
Y. Nesterov, A. Nemirovski
{"title":"l1/核范数最小化的一阶算法","authors":"Y. Nesterov, A. Nemirovski","doi":"10.1017/S096249291300007X","DOIUrl":null,"url":null,"abstract":"In the past decade, problems related to l1/nuclear norm minimization have attracted much attention in the signal processing, machine learning and optimization communities. In this paper, devoted to l1/nuclear norm minimization as ‘optimization beasts’, we give a detailed description of two attractive first-order optimization techniques for solving problems of this type. The first one, aimed primarily at lasso-type problems, comprises fast gradient methods applied to composite minimization formulations. The second approach, aimed at Dantzig-selector-type problems, utilizes saddle-point first-order algorithms and reformulation of the problem of interest as a generalized bilinear saddle-point problem. For both approaches, we give complete and detailed complexity analyses and discuss the application domains.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"22 1","pages":"509 - 575"},"PeriodicalIF":16.3000,"publicationDate":"2013-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S096249291300007X","citationCount":"75","resultStr":"{\"title\":\"On first-order algorithms for l1/nuclear norm minimization\",\"authors\":\"Y. Nesterov, A. Nemirovski\",\"doi\":\"10.1017/S096249291300007X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past decade, problems related to l1/nuclear norm minimization have attracted much attention in the signal processing, machine learning and optimization communities. In this paper, devoted to l1/nuclear norm minimization as ‘optimization beasts’, we give a detailed description of two attractive first-order optimization techniques for solving problems of this type. The first one, aimed primarily at lasso-type problems, comprises fast gradient methods applied to composite minimization formulations. The second approach, aimed at Dantzig-selector-type problems, utilizes saddle-point first-order algorithms and reformulation of the problem of interest as a generalized bilinear saddle-point problem. For both approaches, we give complete and detailed complexity analyses and discuss the application domains.\",\"PeriodicalId\":48863,\"journal\":{\"name\":\"Acta Numerica\",\"volume\":\"22 1\",\"pages\":\"509 - 575\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2013-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S096249291300007X\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Numerica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S096249291300007X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S096249291300007X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 75

摘要

近十年来,l1/核范数最小化问题在信号处理、机器学习和优化领域引起了广泛关注。在本文中,我们将l1/核范数最小化作为“优化野兽”,详细描述了解决这类问题的两种有吸引力的一阶优化技术。第一个主要针对套索型问题,包括应用于复合最小化公式的快速梯度方法。第二种方法,针对dantzig -选择器型问题,利用鞍点一阶算法和将感兴趣的问题重新表述为广义双线性鞍点问题。对于这两种方法,我们都给出了完整和详细的复杂性分析,并讨论了应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On first-order algorithms for l1/nuclear norm minimization
In the past decade, problems related to l1/nuclear norm minimization have attracted much attention in the signal processing, machine learning and optimization communities. In this paper, devoted to l1/nuclear norm minimization as ‘optimization beasts’, we give a detailed description of two attractive first-order optimization techniques for solving problems of this type. The first one, aimed primarily at lasso-type problems, comprises fast gradient methods applied to composite minimization formulations. The second approach, aimed at Dantzig-selector-type problems, utilizes saddle-point first-order algorithms and reformulation of the problem of interest as a generalized bilinear saddle-point problem. For both approaches, we give complete and detailed complexity analyses and discuss the application domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Numerica
Acta Numerica MATHEMATICS-
CiteScore
26.00
自引率
0.70%
发文量
7
期刊介绍: Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses. Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信