{"title":"l1/核范数最小化的一阶算法","authors":"Y. Nesterov, A. Nemirovski","doi":"10.1017/S096249291300007X","DOIUrl":null,"url":null,"abstract":"In the past decade, problems related to l1/nuclear norm minimization have attracted much attention in the signal processing, machine learning and optimization communities. In this paper, devoted to l1/nuclear norm minimization as ‘optimization beasts’, we give a detailed description of two attractive first-order optimization techniques for solving problems of this type. The first one, aimed primarily at lasso-type problems, comprises fast gradient methods applied to composite minimization formulations. The second approach, aimed at Dantzig-selector-type problems, utilizes saddle-point first-order algorithms and reformulation of the problem of interest as a generalized bilinear saddle-point problem. For both approaches, we give complete and detailed complexity analyses and discuss the application domains.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"22 1","pages":"509 - 575"},"PeriodicalIF":16.3000,"publicationDate":"2013-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S096249291300007X","citationCount":"75","resultStr":"{\"title\":\"On first-order algorithms for l1/nuclear norm minimization\",\"authors\":\"Y. Nesterov, A. Nemirovski\",\"doi\":\"10.1017/S096249291300007X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past decade, problems related to l1/nuclear norm minimization have attracted much attention in the signal processing, machine learning and optimization communities. In this paper, devoted to l1/nuclear norm minimization as ‘optimization beasts’, we give a detailed description of two attractive first-order optimization techniques for solving problems of this type. The first one, aimed primarily at lasso-type problems, comprises fast gradient methods applied to composite minimization formulations. The second approach, aimed at Dantzig-selector-type problems, utilizes saddle-point first-order algorithms and reformulation of the problem of interest as a generalized bilinear saddle-point problem. For both approaches, we give complete and detailed complexity analyses and discuss the application domains.\",\"PeriodicalId\":48863,\"journal\":{\"name\":\"Acta Numerica\",\"volume\":\"22 1\",\"pages\":\"509 - 575\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2013-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S096249291300007X\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Numerica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S096249291300007X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S096249291300007X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On first-order algorithms for l1/nuclear norm minimization
In the past decade, problems related to l1/nuclear norm minimization have attracted much attention in the signal processing, machine learning and optimization communities. In this paper, devoted to l1/nuclear norm minimization as ‘optimization beasts’, we give a detailed description of two attractive first-order optimization techniques for solving problems of this type. The first one, aimed primarily at lasso-type problems, comprises fast gradient methods applied to composite minimization formulations. The second approach, aimed at Dantzig-selector-type problems, utilizes saddle-point first-order algorithms and reformulation of the problem of interest as a generalized bilinear saddle-point problem. For both approaches, we give complete and detailed complexity analyses and discuss the application domains.
期刊介绍:
Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses.
Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.