观点:同时处理相对性、相关性和QED

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenjian Liu
{"title":"观点:同时处理相对性、相关性和QED","authors":"Wenjian Liu","doi":"10.1002/wcms.1652","DOIUrl":null,"url":null,"abstract":"<p>Electronic structure calculations of many-electron systems should in principle treat relativistic, correlation, and quantum electrodynamics (QED) effects simultaneously to a high precision, so as to match experimental measurements as close as possible. While both relativistic and QED effects can readily be built into the many-electron Hamiltonian, electron correlation is more difficult to describe due to the exponential growth of the number of parameters in the wave function. Compared with the spin-free case, spin–orbit interaction results in the loss of spin symmetry and concomitant complex algebra, thereby rendering the treatment of electron correlation even more difficult. Possible solutions to these issues are highlighted here.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 4","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Perspective: Simultaneous treatment of relativity, correlation, and QED\",\"authors\":\"Wenjian Liu\",\"doi\":\"10.1002/wcms.1652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electronic structure calculations of many-electron systems should in principle treat relativistic, correlation, and quantum electrodynamics (QED) effects simultaneously to a high precision, so as to match experimental measurements as close as possible. While both relativistic and QED effects can readily be built into the many-electron Hamiltonian, electron correlation is more difficult to describe due to the exponential growth of the number of parameters in the wave function. Compared with the spin-free case, spin–orbit interaction results in the loss of spin symmetry and concomitant complex algebra, thereby rendering the treatment of electron correlation even more difficult. Possible solutions to these issues are highlighted here.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1652\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1652","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

原则上,多电子系统的电子结构计算应同时高精度地处理相对论、相关和量子电动力学(QED)效应,以便尽可能地与实验测量结果相匹配。虽然相对论和QED效应都可以很容易地构建到多电子哈密顿量中,但由于波函数中参数数量的指数增长,电子相关性更难描述。与无自旋情况相比,自旋轨道相互作用导致自旋对称性和伴随复数代数的丧失,从而使电子相关的处理变得更加困难。这里强调了这些问题的可能解决方案。本文分类如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Perspective: Simultaneous treatment of relativity, correlation, and QED

Perspective: Simultaneous treatment of relativity, correlation, and QED

Electronic structure calculations of many-electron systems should in principle treat relativistic, correlation, and quantum electrodynamics (QED) effects simultaneously to a high precision, so as to match experimental measurements as close as possible. While both relativistic and QED effects can readily be built into the many-electron Hamiltonian, electron correlation is more difficult to describe due to the exponential growth of the number of parameters in the wave function. Compared with the spin-free case, spin–orbit interaction results in the loss of spin symmetry and concomitant complex algebra, thereby rendering the treatment of electron correlation even more difficult. Possible solutions to these issues are highlighted here.

This article is categorized under:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信