Johannes Hemmerich, Mohamed Labib, Carmen Steffens, Sebastian J. Reich, Marc Weiske, Meike Baumgart, Christian Rückert, Matthias Ruwe, Daniel Siebert, Volker F. Wendisch, J?rn Kalinowski, Wolfgang Wiechert, Marco Oldiges
{"title":"改良异源角质酶分泌的谷氨酸棒状杆菌基因组还原菌株文库的筛选","authors":"Johannes Hemmerich, Mohamed Labib, Carmen Steffens, Sebastian J. Reich, Marc Weiske, Meike Baumgart, Christian Rückert, Matthias Ruwe, Daniel Siebert, Volker F. Wendisch, J?rn Kalinowski, Wolfgang Wiechert, Marco Oldiges","doi":"10.1111/1751-7915.13660","DOIUrl":null,"url":null,"abstract":"<p>The construction of microbial platform organisms by means of genome reduction is an ongoing topic in biotechnology. In this study, we investigated whether the deletion of single or multiple gene clusters has a positive effect on the secretion of cutinase from <i>Fusarium solani pisi</i> in the industrial workhorse <i>Corynebacterium glutamicum</i>. A total of 22 genome-reduced strain variants were compared applying two Sec signal peptides from <i>Bacillus subtilis</i>. High-throughput phenotyping using robotics-integrated microbioreactor technology with automated harvesting revealed distinct cutinase secretion performance for a specific combination of signal peptide and genomic deletions. The biomass-specific cutinase yield for strain GRS41_51_NprE was increased by ~ 200%, although the growth rate was reduced by ~ 60%. Importantly, the causative deletions of genomic clusters cg2801-cg2828 and <i>rrnC</i>-cg3298 could not have been inferred <i>a priori</i>. Strikingly, bioreactor fed-batch cultivations at controlled growth rates resulted in a complete reversal of the screening results, with the cutinase yield for strain GRS41_51_NprE dropping by ~ 25% compared to the reference strain. Thus, the choice of bioprocess conditions may turn a ‘high-performance’ strain from batch screening into a ‘low-performance’ strain in fed-batch cultivation. In conclusion, future studies are needed in order to understand metabolic adaptations of <i>C. glutamicum</i> to both genomic deletions and different bioprocess conditions.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"13 6","pages":"2020-2031"},"PeriodicalIF":4.8000,"publicationDate":"2020-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13660","citationCount":"15","resultStr":"{\"title\":\"Screening of a genome-reduced Corynebacterium glutamicum strain library for improved heterologous cutinase secretion\",\"authors\":\"Johannes Hemmerich, Mohamed Labib, Carmen Steffens, Sebastian J. Reich, Marc Weiske, Meike Baumgart, Christian Rückert, Matthias Ruwe, Daniel Siebert, Volker F. Wendisch, J?rn Kalinowski, Wolfgang Wiechert, Marco Oldiges\",\"doi\":\"10.1111/1751-7915.13660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The construction of microbial platform organisms by means of genome reduction is an ongoing topic in biotechnology. In this study, we investigated whether the deletion of single or multiple gene clusters has a positive effect on the secretion of cutinase from <i>Fusarium solani pisi</i> in the industrial workhorse <i>Corynebacterium glutamicum</i>. A total of 22 genome-reduced strain variants were compared applying two Sec signal peptides from <i>Bacillus subtilis</i>. High-throughput phenotyping using robotics-integrated microbioreactor technology with automated harvesting revealed distinct cutinase secretion performance for a specific combination of signal peptide and genomic deletions. The biomass-specific cutinase yield for strain GRS41_51_NprE was increased by ~ 200%, although the growth rate was reduced by ~ 60%. Importantly, the causative deletions of genomic clusters cg2801-cg2828 and <i>rrnC</i>-cg3298 could not have been inferred <i>a priori</i>. Strikingly, bioreactor fed-batch cultivations at controlled growth rates resulted in a complete reversal of the screening results, with the cutinase yield for strain GRS41_51_NprE dropping by ~ 25% compared to the reference strain. Thus, the choice of bioprocess conditions may turn a ‘high-performance’ strain from batch screening into a ‘low-performance’ strain in fed-batch cultivation. In conclusion, future studies are needed in order to understand metabolic adaptations of <i>C. glutamicum</i> to both genomic deletions and different bioprocess conditions.</p>\",\"PeriodicalId\":49145,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"13 6\",\"pages\":\"2020-2031\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2020-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/1751-7915.13660\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13660\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13660","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Screening of a genome-reduced Corynebacterium glutamicum strain library for improved heterologous cutinase secretion
The construction of microbial platform organisms by means of genome reduction is an ongoing topic in biotechnology. In this study, we investigated whether the deletion of single or multiple gene clusters has a positive effect on the secretion of cutinase from Fusarium solani pisi in the industrial workhorse Corynebacterium glutamicum. A total of 22 genome-reduced strain variants were compared applying two Sec signal peptides from Bacillus subtilis. High-throughput phenotyping using robotics-integrated microbioreactor technology with automated harvesting revealed distinct cutinase secretion performance for a specific combination of signal peptide and genomic deletions. The biomass-specific cutinase yield for strain GRS41_51_NprE was increased by ~ 200%, although the growth rate was reduced by ~ 60%. Importantly, the causative deletions of genomic clusters cg2801-cg2828 and rrnC-cg3298 could not have been inferred a priori. Strikingly, bioreactor fed-batch cultivations at controlled growth rates resulted in a complete reversal of the screening results, with the cutinase yield for strain GRS41_51_NprE dropping by ~ 25% compared to the reference strain. Thus, the choice of bioprocess conditions may turn a ‘high-performance’ strain from batch screening into a ‘low-performance’ strain in fed-batch cultivation. In conclusion, future studies are needed in order to understand metabolic adaptations of C. glutamicum to both genomic deletions and different bioprocess conditions.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes