{"title":"逻辑学和分析哲学的当前主题。Concha Martínez、JoséL.Falguera和JoséM.Sagüillo主编,《圣地亚哥德孔波斯特拉逻辑与分析哲学学术讨论会》,2001-2005年。圣地亚哥-德孔波斯特拉大学,2007年,288页。","authors":"A. Urquhart","doi":"10.1017/S1079898600001773","DOIUrl":null,"url":null,"abstract":"Finally, the sentence “The notion of proof net is not decidable in an elementary way” (p. 131) is plain wrong. A proof net consists of a sequence of formulas, equipped with the axiom links (i.e., the coherence graph). The question whether such an object is correct, (i.e., represents an actual proof) can be decided in linear time. Lutz Strassburger École Polytechnique, LIX, Rue de Saclay, 91128 Palaiseau Cedex, France Lutz.Strassburger@inria.fr.","PeriodicalId":55307,"journal":{"name":"Bulletin of Symbolic Logic","volume":"14 1","pages":"271 - 272"},"PeriodicalIF":0.7000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1079898600001773","citationCount":"0","resultStr":"{\"title\":\"Current topics in logic and analytic philosophy. edited by Concha Martínez, José L. Falguera and José M. Sagüillo, Colloquium on Logic and Analytic Philosophy at Santiago de Compostela, 2001–2005. Universidade de Santiago de Compostela, 2007, 288 pp.\",\"authors\":\"A. Urquhart\",\"doi\":\"10.1017/S1079898600001773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finally, the sentence “The notion of proof net is not decidable in an elementary way” (p. 131) is plain wrong. A proof net consists of a sequence of formulas, equipped with the axiom links (i.e., the coherence graph). The question whether such an object is correct, (i.e., represents an actual proof) can be decided in linear time. Lutz Strassburger École Polytechnique, LIX, Rue de Saclay, 91128 Palaiseau Cedex, France Lutz.Strassburger@inria.fr.\",\"PeriodicalId\":55307,\"journal\":{\"name\":\"Bulletin of Symbolic Logic\",\"volume\":\"14 1\",\"pages\":\"271 - 272\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2008-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S1079898600001773\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Symbolic Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S1079898600001773\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Symbolic Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1079898600001773","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
摘要
最后,“证明网的概念不能以基本方式确定”(第131页)这句话显然是错误的。证明网由一系列公式组成,并配有公理链(即相干图)。这样一个对象是否正确(即是否代表一个实际证明)的问题可以在线性时间内确定。Lutz Strassburger École巴黎综合理工学院,Rue de Saclay, 91128 Palaiseau Cedex,法国Lutz.Strassburger@inria.fr。
Current topics in logic and analytic philosophy. edited by Concha Martínez, José L. Falguera and José M. Sagüillo, Colloquium on Logic and Analytic Philosophy at Santiago de Compostela, 2001–2005. Universidade de Santiago de Compostela, 2007, 288 pp.
Finally, the sentence “The notion of proof net is not decidable in an elementary way” (p. 131) is plain wrong. A proof net consists of a sequence of formulas, equipped with the axiom links (i.e., the coherence graph). The question whether such an object is correct, (i.e., represents an actual proof) can be decided in linear time. Lutz Strassburger École Polytechnique, LIX, Rue de Saclay, 91128 Palaiseau Cedex, France Lutz.Strassburger@inria.fr.
期刊介绍:
The Bulletin of Symbolic Logic was established in 1995 by the Association for Symbolic Logic to provide a journal of high standards that would be both accessible and of interest to as wide an audience as possible. It is designed to cover all areas within the purview of the ASL: mathematical logic and its applications, philosophical and non-classical logic and its applications, history and philosophy of logic, and philosophy and methodology of mathematics.