正态性和样本量对于两组比较选择适当的统计检验无关紧要

IF 2 3区 心理学 Q2 PSYCHOLOGY, MATHEMATICAL
A. Poncet, D. Courvoisier, C. Combescure, T. Perneger
{"title":"正态性和样本量对于两组比较选择适当的统计检验无关紧要","authors":"A. Poncet, D. Courvoisier, C. Combescure, T. Perneger","doi":"10.1027/1614-2241/A000110","DOIUrl":null,"url":null,"abstract":"Abstract. Many applied researchers are taught to use the t-test when distributions appear normal and/or sample sizes are large and non-parametric tests otherwise, and fear inflated error rates if the “wrong” test is used. In a simulation study (four tests: t-test, Mann-Whitney test, Robust t-test, Permutation test; seven sample sizes between 2 × 10 and 2 × 500; four distributions: normal, uniform, log-normal, bimodal; under the null and alternate hypotheses), we show that type 1 errors are well controlled in all conditions. The t-test is most powerful under the normal and the uniform distributions, the Mann-Whitney test under the lognormal distribution, and the robust t-test under the bimodal distribution. Importantly, even the t-test was more powerful under asymmetric distributions than under the normal distribution for the same effect size. It appears that normality and sample size do not matter for the selection of a test to compare two groups of same size and variance. The researcher can opt for the t...","PeriodicalId":18476,"journal":{"name":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","volume":"12 1","pages":"61-71"},"PeriodicalIF":2.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Normality and Sample Size Do Not Matter for the Selection of an Appropriate Statistical Test for Two-Group Comparisons\",\"authors\":\"A. Poncet, D. Courvoisier, C. Combescure, T. Perneger\",\"doi\":\"10.1027/1614-2241/A000110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Many applied researchers are taught to use the t-test when distributions appear normal and/or sample sizes are large and non-parametric tests otherwise, and fear inflated error rates if the “wrong” test is used. In a simulation study (four tests: t-test, Mann-Whitney test, Robust t-test, Permutation test; seven sample sizes between 2 × 10 and 2 × 500; four distributions: normal, uniform, log-normal, bimodal; under the null and alternate hypotheses), we show that type 1 errors are well controlled in all conditions. The t-test is most powerful under the normal and the uniform distributions, the Mann-Whitney test under the lognormal distribution, and the robust t-test under the bimodal distribution. Importantly, even the t-test was more powerful under asymmetric distributions than under the normal distribution for the same effect size. It appears that normality and sample size do not matter for the selection of a test to compare two groups of same size and variance. The researcher can opt for the t...\",\"PeriodicalId\":18476,\"journal\":{\"name\":\"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences\",\"volume\":\"12 1\",\"pages\":\"61-71\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2016-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241/A000110\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000110","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 35

摘要

摘要许多应用研究人员被教导在分布呈现正态和/或样本量较大时使用t检验,否则使用非参数检验,并且担心如果使用“错误”检验会增加错误率。在模拟研究中(4个检验:t检验、Mann-Whitney检验、Robust t检验、置换检验;7个样本量在2 × 10到2 × 500之间;四种分布:正态、均匀、对数正态、双峰;在零假设和交替假设下,我们证明在所有条件下,类型1误差都得到了很好的控制。正态分布和均匀分布下的t检验最有效,对数正态分布下的Mann-Whitney检验最有效,双峰分布下的稳健t检验最有效。重要的是,即使t检验在非对称分布下也比在正态分布下更有效。似乎正态性和样本量对于选择比较两个大小和方差相同的组的检验并不重要。研究者可以选择t…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normality and Sample Size Do Not Matter for the Selection of an Appropriate Statistical Test for Two-Group Comparisons
Abstract. Many applied researchers are taught to use the t-test when distributions appear normal and/or sample sizes are large and non-parametric tests otherwise, and fear inflated error rates if the “wrong” test is used. In a simulation study (four tests: t-test, Mann-Whitney test, Robust t-test, Permutation test; seven sample sizes between 2 × 10 and 2 × 500; four distributions: normal, uniform, log-normal, bimodal; under the null and alternate hypotheses), we show that type 1 errors are well controlled in all conditions. The t-test is most powerful under the normal and the uniform distributions, the Mann-Whitney test under the lognormal distribution, and the robust t-test under the bimodal distribution. Importantly, even the t-test was more powerful under asymmetric distributions than under the normal distribution for the same effect size. It appears that normality and sample size do not matter for the selection of a test to compare two groups of same size and variance. The researcher can opt for the t...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
6.50%
发文量
16
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信