一种具有相关残差的层次贝叶斯模型用于研究密集纵向数据设置的稳定性和变化

IF 2 3区 心理学 Q2 PSYCHOLOGY, MATHEMATICAL
F. Gasimova, A. Robitzsch, O. Wilhelm, G. Hülür
{"title":"一种具有相关残差的层次贝叶斯模型用于研究密集纵向数据设置的稳定性和变化","authors":"F. Gasimova, A. Robitzsch, O. Wilhelm, G. Hülür","doi":"10.1027/1614-2241/A000083","DOIUrl":null,"url":null,"abstract":"The present paper’s focus is the modeling of interindividual and intraindividual variability in longitudinal data. We propose a hierarchical Bayesian model with correlated residuals, employing an autoregressive parameter AR(1) for focusing on intraindividual variability. The hierarchical model possesses four individual random effects: intercept, slope, variability, and autocorrelation. The performance of the proposed Bayesian estimation is investigated in simulated longitudinal data with three different sample sizes (N = 100, 200, 500) and three different numbers of measurement points (T = 10, 20, 40). The initial simulation values are selected according to the results of the first 20 measurement occasions from a longitudinal study on working memory capacity in 9th graders. Within this simulation study, we investigate the root mean square error (RMSE), bias, relative percentage bias, and the 90% coverage probability of parameter estimates. Results indicate that more accurate estimates are associated with ...","PeriodicalId":18476,"journal":{"name":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","volume":"10 1","pages":"126-137"},"PeriodicalIF":2.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Hierarchical Bayesian Model With Correlated Residuals for Investigating Stability and Change in Intensive Longitudinal Data Settings\",\"authors\":\"F. Gasimova, A. Robitzsch, O. Wilhelm, G. Hülür\",\"doi\":\"10.1027/1614-2241/A000083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper’s focus is the modeling of interindividual and intraindividual variability in longitudinal data. We propose a hierarchical Bayesian model with correlated residuals, employing an autoregressive parameter AR(1) for focusing on intraindividual variability. The hierarchical model possesses four individual random effects: intercept, slope, variability, and autocorrelation. The performance of the proposed Bayesian estimation is investigated in simulated longitudinal data with three different sample sizes (N = 100, 200, 500) and three different numbers of measurement points (T = 10, 20, 40). The initial simulation values are selected according to the results of the first 20 measurement occasions from a longitudinal study on working memory capacity in 9th graders. Within this simulation study, we investigate the root mean square error (RMSE), bias, relative percentage bias, and the 90% coverage probability of parameter estimates. Results indicate that more accurate estimates are associated with ...\",\"PeriodicalId\":18476,\"journal\":{\"name\":\"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences\",\"volume\":\"10 1\",\"pages\":\"126-137\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241/A000083\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000083","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 8

摘要

本文的重点是纵向数据中个体间和个体内部变异的建模。我们提出了一个具有相关残差的分层贝叶斯模型,采用自回归参数AR(1)来关注个体内部变异性。分层模型具有四个单独的随机效应:截距、斜率、可变性和自相关性。在三种不同样本量(N = 100,200,500)和三种不同测点数量(T = 10,20,40)的模拟纵向数据中研究了所提出的贝叶斯估计的性能。初始模拟值是根据九年级学生工作记忆容量纵向研究的前20次测量结果选取的。在这个模拟研究中,我们研究了均方根误差(RMSE)、偏差、相对百分比偏差和参数估计的90%覆盖概率。结果表明,更准确的估计与……有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hierarchical Bayesian Model With Correlated Residuals for Investigating Stability and Change in Intensive Longitudinal Data Settings
The present paper’s focus is the modeling of interindividual and intraindividual variability in longitudinal data. We propose a hierarchical Bayesian model with correlated residuals, employing an autoregressive parameter AR(1) for focusing on intraindividual variability. The hierarchical model possesses four individual random effects: intercept, slope, variability, and autocorrelation. The performance of the proposed Bayesian estimation is investigated in simulated longitudinal data with three different sample sizes (N = 100, 200, 500) and three different numbers of measurement points (T = 10, 20, 40). The initial simulation values are selected according to the results of the first 20 measurement occasions from a longitudinal study on working memory capacity in 9th graders. Within this simulation study, we investigate the root mean square error (RMSE), bias, relative percentage bias, and the 90% coverage probability of parameter estimates. Results indicate that more accurate estimates are associated with ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
6.50%
发文量
16
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信