它真的健壮吗?

IF 2 3区 心理学 Q2 PSYCHOLOGY, MATHEMATICAL
Emanuel Schmider, M. Ziegler, Erik Danay, Luzi Beyer, M. Bühner
{"title":"它真的健壮吗?","authors":"Emanuel Schmider, M. Ziegler, Erik Danay, Luzi Beyer, M. Bühner","doi":"10.1027/1614-2241/A000016","DOIUrl":null,"url":null,"abstract":"Empirical evidence to the robustness of the analysis of variance (ANOVA) concerning violation of the normality assumption is presented by means of Monte Carlo methods. High-quality samples underlying normally, rectangularly, and exponentially distributed basic populations are created by drawing samples which consist of random numbers from respective generators, checking their goodness of fit, and allowing only the best 10% to take part in the investigation. A one-way fixed-effect design with three groups of 25 values each is chosen. Effect-sizes are implemented in the samples and varied over a broad range. Comparing the outcomes of the ANOVA calculations for the different types of distributions, gives reason to regard the ANOVA as robust. Both, the empirical type I error α and the empirical type II error β remain constant under violation. Moreover, regression analysis identifies the factor “type of distribution” as not significant in explanation of the ANOVA results.","PeriodicalId":18476,"journal":{"name":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","volume":"6 1","pages":"147-151"},"PeriodicalIF":2.0000,"publicationDate":"2010-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1027/1614-2241/A000016","citationCount":"815","resultStr":"{\"title\":\"Is It Really Robust\",\"authors\":\"Emanuel Schmider, M. Ziegler, Erik Danay, Luzi Beyer, M. Bühner\",\"doi\":\"10.1027/1614-2241/A000016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Empirical evidence to the robustness of the analysis of variance (ANOVA) concerning violation of the normality assumption is presented by means of Monte Carlo methods. High-quality samples underlying normally, rectangularly, and exponentially distributed basic populations are created by drawing samples which consist of random numbers from respective generators, checking their goodness of fit, and allowing only the best 10% to take part in the investigation. A one-way fixed-effect design with three groups of 25 values each is chosen. Effect-sizes are implemented in the samples and varied over a broad range. Comparing the outcomes of the ANOVA calculations for the different types of distributions, gives reason to regard the ANOVA as robust. Both, the empirical type I error α and the empirical type II error β remain constant under violation. Moreover, regression analysis identifies the factor “type of distribution” as not significant in explanation of the ANOVA results.\",\"PeriodicalId\":18476,\"journal\":{\"name\":\"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences\",\"volume\":\"6 1\",\"pages\":\"147-151\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2010-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1027/1614-2241/A000016\",\"citationCount\":\"815\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241/A000016\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000016","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 815

摘要

通过蒙特卡罗方法给出了关于违反正态性假设的方差分析(ANOVA)的稳健性的经验证据。在正态分布、矩形分布和指数分布的基本人口基础上,通过从各自的生成器中绘制由随机数组成的样本,检查它们的拟合优度,并只允许最好的10%参加调查,来创建高质量的样本。选择单向固定效应设计,每组25个值。效应大小在样本中实现,并在很大范围内变化。比较不同类型分布的方差分析计算结果,给出理由认为方差分析是稳健的。经验I型误差α和经验II型误差β在违和下均保持恒定。此外,回归分析确定因子“分布类型”在解释ANOVA结果时不显着。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is It Really Robust
Empirical evidence to the robustness of the analysis of variance (ANOVA) concerning violation of the normality assumption is presented by means of Monte Carlo methods. High-quality samples underlying normally, rectangularly, and exponentially distributed basic populations are created by drawing samples which consist of random numbers from respective generators, checking their goodness of fit, and allowing only the best 10% to take part in the investigation. A one-way fixed-effect design with three groups of 25 values each is chosen. Effect-sizes are implemented in the samples and varied over a broad range. Comparing the outcomes of the ANOVA calculations for the different types of distributions, gives reason to regard the ANOVA as robust. Both, the empirical type I error α and the empirical type II error β remain constant under violation. Moreover, regression analysis identifies the factor “type of distribution” as not significant in explanation of the ANOVA results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
6.50%
发文量
16
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信