不同类型评级器的CTC(M−1)模型

IF 2 3区 心理学 Q2 PSYCHOLOGY, MATHEMATICAL
Fridtjof W. Nussbeck, M. Eid, C. Geiser, D. Courvoisier, T. Lischetzke
{"title":"不同类型评级器的CTC(M−1)模型","authors":"Fridtjof W. Nussbeck, M. Eid, C. Geiser, D. Courvoisier, T. Lischetzke","doi":"10.1027/1614-2241.5.3.88","DOIUrl":null,"url":null,"abstract":"Many psychologists collect multitrait-multimethod (MTMM) data to assess the convergent and discriminant validity of psychological measures. In order to choose the most appropriate model, the types of methods applied have to be considered. It is shown how the combination of interchangeable and structurally different raters can be analyzed with an extension of the correlated trait-correlated method minus one [CTC(M−1)] model. This extension allows for disentangling individual rater biases (unique method effects) from shared rater biases (common method effects). The basic ideas of this model are presented and illustrated by an empirical example.","PeriodicalId":18476,"journal":{"name":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","volume":"5 1","pages":"88-98"},"PeriodicalIF":2.0000,"publicationDate":"2009-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"A CTC(M−1) Model for Different Types of Raters\",\"authors\":\"Fridtjof W. Nussbeck, M. Eid, C. Geiser, D. Courvoisier, T. Lischetzke\",\"doi\":\"10.1027/1614-2241.5.3.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many psychologists collect multitrait-multimethod (MTMM) data to assess the convergent and discriminant validity of psychological measures. In order to choose the most appropriate model, the types of methods applied have to be considered. It is shown how the combination of interchangeable and structurally different raters can be analyzed with an extension of the correlated trait-correlated method minus one [CTC(M−1)] model. This extension allows for disentangling individual rater biases (unique method effects) from shared rater biases (common method effects). The basic ideas of this model are presented and illustrated by an empirical example.\",\"PeriodicalId\":18476,\"journal\":{\"name\":\"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences\",\"volume\":\"5 1\",\"pages\":\"88-98\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2009-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241.5.3.88\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241.5.3.88","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 45

摘要

许多心理学家收集多特征多方法(MTMM)数据来评估心理测量的收敛效度和判别效度。为了选择最合适的模型,必须考虑应用的方法类型。本文展示了如何用相关性状-相关方法的扩展减去1 [CTC(M−1)]模型来分析可互换和结构不同的评分者的组合。这个扩展允许从共享的rater偏见(共同的方法影响)解开个人的rater偏见(独特的方法影响)。提出了该模型的基本思想,并通过一个实例加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CTC(M−1) Model for Different Types of Raters
Many psychologists collect multitrait-multimethod (MTMM) data to assess the convergent and discriminant validity of psychological measures. In order to choose the most appropriate model, the types of methods applied have to be considered. It is shown how the combination of interchangeable and structurally different raters can be analyzed with an extension of the correlated trait-correlated method minus one [CTC(M−1)] model. This extension allows for disentangling individual rater biases (unique method effects) from shared rater biases (common method effects). The basic ideas of this model are presented and illustrated by an empirical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
6.50%
发文量
16
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信