结构方程纵向数据分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
J. Rosel, I. Plewis
{"title":"结构方程纵向数据分析","authors":"J. Rosel, I. Plewis","doi":"10.1027/1614-2241.4.1.37","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper we review different structural equation models for the analysis of longitudinal data: (a) univariate models of observable variables, (b) multivariate models of observable variables, (c) models with latent variables, (d) models that are unconditioned or conditioned to other variables (depending on the variability of the independent variables: time-varying or time-invariant, and depending on the type of independent variables: of latent variables or of observable variables), (e) models with interaction of variables, (f) models with nonlinear variables, (g) models with a constant, (h) with single level and multilevel measurement, and (i) other advances in SEM of longitudinal data (latent growth curve model, latent difference score, etc.). We pay more attention to the interaction of variables and to nonlinear transformations of variables because they are not frequently used in empirical investigation. They do, however, offer interesting possibilities to researchers who wish to verify re...","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2008-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1027/1614-2241.4.1.37","citationCount":"31","resultStr":"{\"title\":\"Longitudinal Data Analysis with Structural Equations\",\"authors\":\"J. Rosel, I. Plewis\",\"doi\":\"10.1027/1614-2241.4.1.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this paper we review different structural equation models for the analysis of longitudinal data: (a) univariate models of observable variables, (b) multivariate models of observable variables, (c) models with latent variables, (d) models that are unconditioned or conditioned to other variables (depending on the variability of the independent variables: time-varying or time-invariant, and depending on the type of independent variables: of latent variables or of observable variables), (e) models with interaction of variables, (f) models with nonlinear variables, (g) models with a constant, (h) with single level and multilevel measurement, and (i) other advances in SEM of longitudinal data (latent growth curve model, latent difference score, etc.). We pay more attention to the interaction of variables and to nonlinear transformations of variables because they are not frequently used in empirical investigation. They do, however, offer interesting possibilities to researchers who wish to verify re...\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2008-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1027/1614-2241.4.1.37\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241.4.1.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241.4.1.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 31

摘要

摘要在本文中,我们回顾了用于纵向数据分析的不同结构方程模型:(a)可观察变量的单变量模型,(b)可观察变量的多变量模型,(c)具有潜在变量的模型,(d)无条件或条件于其他变量的模型(取决于自变量的可变性:时变或时不变,以及取决于自变量的类型)。(e)变量相互作用模型,(f)非线性变量模型,(g)常数模型,(h)单水平和多水平测量模型,以及(i)纵向数据SEM的其他进展(潜在增长曲线模型,潜在差异评分等)。我们更关注变量的相互作用和变量的非线性变换,因为它们在实证研究中不常用。然而,它们确实为希望验证re的研究人员提供了有趣的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longitudinal Data Analysis with Structural Equations
Abstract. In this paper we review different structural equation models for the analysis of longitudinal data: (a) univariate models of observable variables, (b) multivariate models of observable variables, (c) models with latent variables, (d) models that are unconditioned or conditioned to other variables (depending on the variability of the independent variables: time-varying or time-invariant, and depending on the type of independent variables: of latent variables or of observable variables), (e) models with interaction of variables, (f) models with nonlinear variables, (g) models with a constant, (h) with single level and multilevel measurement, and (i) other advances in SEM of longitudinal data (latent growth curve model, latent difference score, etc.). We pay more attention to the interaction of variables and to nonlinear transformations of variables because they are not frequently used in empirical investigation. They do, however, offer interesting possibilities to researchers who wish to verify re...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信