非线性结构方程建模的挑战

IF 2 3区 心理学 Q2 PSYCHOLOGY, MATHEMATICAL
Polina Dimitruk, K. Schermelleh-engel, A. Kelava, H. Moosbrugger
{"title":"非线性结构方程建模的挑战","authors":"Polina Dimitruk, K. Schermelleh-engel, A. Kelava, H. Moosbrugger","doi":"10.1027/1614-2241.3.3.100","DOIUrl":null,"url":null,"abstract":"Abstract. Challenges in evaluating nonlinear effects in multiple regression analyses include reliability, validity, multicollinearity, and dichotomization of continuous variables. While reliability and validity issues are solved by employing nonlinear structural equation modeling, multicollinearity remains a problem which may even be aggravated when using latent variable approaches. Further challenges of nonlinear latent analyses comprise the distribution of latent product terms, a problem especially relevant for approaches using maximum likelihood estimation methods based on multivariate normally distributed variables, and unbiased estimates of nonlinear effects under multicollinearity. The only methods that explicitly take the nonnormality of nonlinear latent models into account are latent moderated structural equations (LMS) and quasi-maximum likelihood (QML). In a small simulation study both methods yielded unbiased parameter estimates and correct estimates of standard errors for inferential statistic...","PeriodicalId":18476,"journal":{"name":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","volume":"3 1","pages":"100-114"},"PeriodicalIF":2.0000,"publicationDate":"2007-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1027/1614-2241.3.3.100","citationCount":"103","resultStr":"{\"title\":\"Challenges in Nonlinear Structural Equation Modeling\",\"authors\":\"Polina Dimitruk, K. Schermelleh-engel, A. Kelava, H. Moosbrugger\",\"doi\":\"10.1027/1614-2241.3.3.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Challenges in evaluating nonlinear effects in multiple regression analyses include reliability, validity, multicollinearity, and dichotomization of continuous variables. While reliability and validity issues are solved by employing nonlinear structural equation modeling, multicollinearity remains a problem which may even be aggravated when using latent variable approaches. Further challenges of nonlinear latent analyses comprise the distribution of latent product terms, a problem especially relevant for approaches using maximum likelihood estimation methods based on multivariate normally distributed variables, and unbiased estimates of nonlinear effects under multicollinearity. The only methods that explicitly take the nonnormality of nonlinear latent models into account are latent moderated structural equations (LMS) and quasi-maximum likelihood (QML). In a small simulation study both methods yielded unbiased parameter estimates and correct estimates of standard errors for inferential statistic...\",\"PeriodicalId\":18476,\"journal\":{\"name\":\"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences\",\"volume\":\"3 1\",\"pages\":\"100-114\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2007-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1027/1614-2241.3.3.100\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241.3.3.100\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241.3.3.100","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 103

摘要

摘要评估多元回归分析中非线性效应的挑战包括信度、效度、多重共线性和连续变量的二分类。虽然采用非线性结构方程模型解决了信度和效度问题,但多重共线性仍然是一个问题,使用潜变量方法甚至可能加剧多重共线性问题。非线性潜在分析的进一步挑战包括潜在乘积项的分布,这是一个特别与基于多变量正态分布变量的最大似然估计方法相关的问题,以及多重共线性下非线性效应的无偏估计。明确考虑非线性潜在模型的非正态性的方法只有潜在调节结构方程(LMS)和拟极大似然(QML)。在一个小型模拟研究中,这两种方法都得到了无偏参数估计和正确的推断统计标准误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges in Nonlinear Structural Equation Modeling
Abstract. Challenges in evaluating nonlinear effects in multiple regression analyses include reliability, validity, multicollinearity, and dichotomization of continuous variables. While reliability and validity issues are solved by employing nonlinear structural equation modeling, multicollinearity remains a problem which may even be aggravated when using latent variable approaches. Further challenges of nonlinear latent analyses comprise the distribution of latent product terms, a problem especially relevant for approaches using maximum likelihood estimation methods based on multivariate normally distributed variables, and unbiased estimates of nonlinear effects under multicollinearity. The only methods that explicitly take the nonnormality of nonlinear latent models into account are latent moderated structural equations (LMS) and quasi-maximum likelihood (QML). In a small simulation study both methods yielded unbiased parameter estimates and correct estimates of standard errors for inferential statistic...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
6.50%
发文量
16
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信