梁理论的有效性在经典边界之外的扩展

IF 1.4 4区 工程技术 Q2 ENGINEERING, AEROSPACE
A. van der Neut
{"title":"梁理论的有效性在经典边界之外的扩展","authors":"A. van der Neut","doi":"10.1017/S0001924000048259","DOIUrl":null,"url":null,"abstract":"The elementary beam theory for shell structures yields the exact solution for normal and shear stress, if the three following conditions are fulfilled: (a) the shell must be prismatic; (b) the cross section must not deform in its plane; (c) the centres of rotation of the different cross sections must form an axis of rotation parallel to the longitudinal axis of the beam.","PeriodicalId":50846,"journal":{"name":"Aeronautical Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"1970-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Extension of the Validity of Beam Theory Beyond its Classical Bounds\",\"authors\":\"A. van der Neut\",\"doi\":\"10.1017/S0001924000048259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The elementary beam theory for shell structures yields the exact solution for normal and shear stress, if the three following conditions are fulfilled: (a) the shell must be prismatic; (b) the cross section must not deform in its plane; (c) the centres of rotation of the different cross sections must form an axis of rotation parallel to the longitudinal axis of the beam.\",\"PeriodicalId\":50846,\"journal\":{\"name\":\"Aeronautical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"1970-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aeronautical Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0001924000048259\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeronautical Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0001924000048259","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

摘要

如果满足以下三个条件,壳结构的基本梁理论给出了法向应力和剪应力的精确解:(a)壳必须是棱柱形的;(b)截面不得在其平面内变形;(c)不同截面的旋转中心必须形成平行于梁纵轴的旋转轴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Extension of the Validity of Beam Theory Beyond its Classical Bounds
The elementary beam theory for shell structures yields the exact solution for normal and shear stress, if the three following conditions are fulfilled: (a) the shell must be prismatic; (b) the cross section must not deform in its plane; (c) the centres of rotation of the different cross sections must form an axis of rotation parallel to the longitudinal axis of the beam.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aeronautical Journal
Aeronautical Journal 工程技术-工程:宇航
CiteScore
3.70
自引率
14.30%
发文量
86
审稿时长
6-12 weeks
期刊介绍: The Aeronautical Journal contains original papers on all aspects of research, design and development, construction and operation of aircraft and space vehicles. Papers are therefore solicited on all aspects of research, design and development, construction and operation of aircraft and space vehicles. Papers are also welcomed which review, comprehensively, the results of recent research developments in any of the above topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信