改进流体动力学系统的随机拓扑优化算法

IF 1.7 3区 工程技术 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fox Furrokh, Nic Zhang
{"title":"改进流体动力学系统的随机拓扑优化算法","authors":"Fox Furrokh, Nic Zhang","doi":"10.1017/S0890060422000257","DOIUrl":null,"url":null,"abstract":"Abstract The use of topology optimization in the design of fluid dynamics systems is still in its infancy. With the decreasing cost of additive manufacture, the application of topology optimization in the design of structural components has begun to increase. This paper provides a method for using topology optimization to reduce the power dissipation of fluid dynamics systems, with the novelty of it being the first application of stochastic mechanisms in the design of 3D fluid–solid geometrical interfaces. The optimization algorithm uses the continuous adjoint method for sensitivity analysis and is optimized against an objective function for fluid power dissipation. The paper details the methodology behind a vanilla gradient descent approach before introducing stochastic behavior through a minibatch-based system. Both algorithms are then applied to a novel case study for an internal combustion engine's piston cooling gallery before the performance of each algorithm's resulting geometry is analyzed and compared. The vanilla gradient descent algorithm achieves an 8.9% improvement in pressure loss through the case study, and this is surpassed by the stochastic descent algorithm which achieved a 9.9% improvement, however this improvement came with a large time cost. Both approaches produced similarly unintuitive geometry solutions to successfully improve the performance of the cooling gallery.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":"36 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A stochastic topology optimization algorithm for improved fluid dynamics systems\",\"authors\":\"Fox Furrokh, Nic Zhang\",\"doi\":\"10.1017/S0890060422000257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The use of topology optimization in the design of fluid dynamics systems is still in its infancy. With the decreasing cost of additive manufacture, the application of topology optimization in the design of structural components has begun to increase. This paper provides a method for using topology optimization to reduce the power dissipation of fluid dynamics systems, with the novelty of it being the first application of stochastic mechanisms in the design of 3D fluid–solid geometrical interfaces. The optimization algorithm uses the continuous adjoint method for sensitivity analysis and is optimized against an objective function for fluid power dissipation. The paper details the methodology behind a vanilla gradient descent approach before introducing stochastic behavior through a minibatch-based system. Both algorithms are then applied to a novel case study for an internal combustion engine's piston cooling gallery before the performance of each algorithm's resulting geometry is analyzed and compared. The vanilla gradient descent algorithm achieves an 8.9% improvement in pressure loss through the case study, and this is surpassed by the stochastic descent algorithm which achieved a 9.9% improvement, however this improvement came with a large time cost. Both approaches produced similarly unintuitive geometry solutions to successfully improve the performance of the cooling gallery.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060422000257\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060422000257","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

拓扑优化在流体动力学系统设计中的应用尚处于起步阶段。随着增材制造成本的不断降低,拓扑优化在结构件设计中的应用开始增多。本文提供了一种利用拓扑优化来降低流体动力学系统功耗的方法,其新颖之处在于它是随机机制在三维流固几何界面设计中的首次应用。优化算法采用连续伴随法进行灵敏度分析,并以流体功率耗散为目标函数进行优化。在通过基于小批量的系统引入随机行为之前,本文详细介绍了香草梯度下降方法背后的方法。然后将这两种算法应用于内燃机活塞冷却廊的新案例研究,然后对每种算法的结果几何性能进行分析和比较。通过案例研究,香草梯度下降算法在压力损失方面实现了8.9%的改进,而随机下降算法的改进达到了9.9%,但是这种改进需要很大的时间成本。这两种方法都产生了类似的不直观的几何解决方案,成功地提高了冷却廊的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic topology optimization algorithm for improved fluid dynamics systems
Abstract The use of topology optimization in the design of fluid dynamics systems is still in its infancy. With the decreasing cost of additive manufacture, the application of topology optimization in the design of structural components has begun to increase. This paper provides a method for using topology optimization to reduce the power dissipation of fluid dynamics systems, with the novelty of it being the first application of stochastic mechanisms in the design of 3D fluid–solid geometrical interfaces. The optimization algorithm uses the continuous adjoint method for sensitivity analysis and is optimized against an objective function for fluid power dissipation. The paper details the methodology behind a vanilla gradient descent approach before introducing stochastic behavior through a minibatch-based system. Both algorithms are then applied to a novel case study for an internal combustion engine's piston cooling gallery before the performance of each algorithm's resulting geometry is analyzed and compared. The vanilla gradient descent algorithm achieves an 8.9% improvement in pressure loss through the case study, and this is surpassed by the stochastic descent algorithm which achieved a 9.9% improvement, however this improvement came with a large time cost. Both approaches produced similarly unintuitive geometry solutions to successfully improve the performance of the cooling gallery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
14.30%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信