Selwin K. Wu, Juliana Ariffin, Shu Chian Tay, Remigio Picone
{"title":"中心体扩增诱导的衰老相关的变异分泌表型构成了激活缺氧诱导因子-1α的途径","authors":"Selwin K. Wu, Juliana Ariffin, Shu Chian Tay, Remigio Picone","doi":"10.1111/acel.13766","DOIUrl":null,"url":null,"abstract":"<p>The senescence-associated secretory phenotype (SASP) can promote paracrine invasion while suppressing tumour growth, thus generating complex phenotypic outcomes. Likewise, centrosome amplification can induce proliferation arrest yet also facilitate tumour invasion. However, the eventual fate of cells with centrosome amplification remains elusive. Here, we report that centrosome amplification induces a variant of SASP, which constitutes a pathway activating paracrine invasion. The centrosome amplification-induced SASP is non-canonical as it lacks the archetypal detectable DNA damage and prominent NF-κB activation, but involves Rac activation and production of reactive oxygen species. Consequently, it induces hypoxia-inducible factor 1α and associated genes, including pro-migratory factors such as ANGPTL4. Of note, cellular senescence can either induce tumourigenesis through paracrine signalling or conversely suppress tumourigenesis through p53 induction. By analogy, centrosome amplification-induced SASP may therefore be one reason why extra centrosomes promote malignancy in some experimental models but are neutral in others.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 3","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13766","citationCount":"3","resultStr":"{\"title\":\"The variant senescence-associated secretory phenotype induced by centrosome amplification constitutes a pathway that activates hypoxia-inducible factor-1α\",\"authors\":\"Selwin K. Wu, Juliana Ariffin, Shu Chian Tay, Remigio Picone\",\"doi\":\"10.1111/acel.13766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The senescence-associated secretory phenotype (SASP) can promote paracrine invasion while suppressing tumour growth, thus generating complex phenotypic outcomes. Likewise, centrosome amplification can induce proliferation arrest yet also facilitate tumour invasion. However, the eventual fate of cells with centrosome amplification remains elusive. Here, we report that centrosome amplification induces a variant of SASP, which constitutes a pathway activating paracrine invasion. The centrosome amplification-induced SASP is non-canonical as it lacks the archetypal detectable DNA damage and prominent NF-κB activation, but involves Rac activation and production of reactive oxygen species. Consequently, it induces hypoxia-inducible factor 1α and associated genes, including pro-migratory factors such as ANGPTL4. Of note, cellular senescence can either induce tumourigenesis through paracrine signalling or conversely suppress tumourigenesis through p53 induction. By analogy, centrosome amplification-induced SASP may therefore be one reason why extra centrosomes promote malignancy in some experimental models but are neutral in others.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"22 3\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13766\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.13766\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.13766","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The variant senescence-associated secretory phenotype induced by centrosome amplification constitutes a pathway that activates hypoxia-inducible factor-1α
The senescence-associated secretory phenotype (SASP) can promote paracrine invasion while suppressing tumour growth, thus generating complex phenotypic outcomes. Likewise, centrosome amplification can induce proliferation arrest yet also facilitate tumour invasion. However, the eventual fate of cells with centrosome amplification remains elusive. Here, we report that centrosome amplification induces a variant of SASP, which constitutes a pathway activating paracrine invasion. The centrosome amplification-induced SASP is non-canonical as it lacks the archetypal detectable DNA damage and prominent NF-κB activation, but involves Rac activation and production of reactive oxygen species. Consequently, it induces hypoxia-inducible factor 1α and associated genes, including pro-migratory factors such as ANGPTL4. Of note, cellular senescence can either induce tumourigenesis through paracrine signalling or conversely suppress tumourigenesis through p53 induction. By analogy, centrosome amplification-induced SASP may therefore be one reason why extra centrosomes promote malignancy in some experimental models but are neutral in others.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.