{"title":"PageRank的梯度和harnack型估计","authors":"P. Horn, Lauren M. Nelsen","doi":"10.1017/nws.2020.34","DOIUrl":null,"url":null,"abstract":"Abstract Personalized PageRank has found many uses in not only the ranking of webpages, but also algorithmic design, due to its ability to capture certain geometric properties of networks. In this paper, we study the diffusion of PageRank: how varying the jumping (or teleportation) constant affects PageRank values. To this end, we prove a gradient estimate for PageRank, akin to the Li–Yau inequality for positive solutions to the heat equation (for manifolds, with later versions adapted to graphs).","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/nws.2020.34","citationCount":"2","resultStr":"{\"title\":\"Gradient and Harnack-type estimates for PageRank\",\"authors\":\"P. Horn, Lauren M. Nelsen\",\"doi\":\"10.1017/nws.2020.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Personalized PageRank has found many uses in not only the ranking of webpages, but also algorithmic design, due to its ability to capture certain geometric properties of networks. In this paper, we study the diffusion of PageRank: how varying the jumping (or teleportation) constant affects PageRank values. To this end, we prove a gradient estimate for PageRank, akin to the Li–Yau inequality for positive solutions to the heat equation (for manifolds, with later versions adapted to graphs).\",\"PeriodicalId\":51827,\"journal\":{\"name\":\"Network Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/nws.2020.34\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/nws.2020.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2020.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
Abstract Personalized PageRank has found many uses in not only the ranking of webpages, but also algorithmic design, due to its ability to capture certain geometric properties of networks. In this paper, we study the diffusion of PageRank: how varying the jumping (or teleportation) constant affects PageRank values. To this end, we prove a gradient estimate for PageRank, akin to the Li–Yau inequality for positive solutions to the heat equation (for manifolds, with later versions adapted to graphs).
期刊介绍:
Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.