基于m - fr可微算子的类牛顿方法的收敛性及其在辐射传递中的应用

Q4 Mathematics
I. Argyros
{"title":"基于m - fr<s:1>可微算子的类牛顿方法的收敛性及其在辐射传递中的应用","authors":"I. Argyros","doi":"10.1023/A:1012935501224","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":54859,"journal":{"name":"Journal of Computational Analysis and Applications","volume":"4 1","pages":"141-154"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1023/A:1012935501224","citationCount":"1","resultStr":"{\"title\":\"On the Convergence of Newton-Like Methods Based on M-Fréchet Differentiable Operators and Applications in Radiative Transfer\",\"authors\":\"I. Argyros\",\"doi\":\"10.1023/A:1012935501224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":54859,\"journal\":{\"name\":\"Journal of Computational Analysis and Applications\",\"volume\":\"4 1\",\"pages\":\"141-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1023/A:1012935501224\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1023/A:1012935501224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1023/A:1012935501224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Convergence of Newton-Like Methods Based on M-Fréchet Differentiable Operators and Applications in Radiative Transfer
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Analysis and Applications
Journal of Computational Analysis and Applications 数学-计算机:理论方法
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: The main purpose of "J.Computational Analysis and Applications" is to publish high quality research articles from all subareas of Computational Mathematical Analysis and its many potential applications and connections to other areas of Mathematical Sciences. Any paper whose approach and proofs are computational,using methods from Mathematical Analysis in the broadest sense is suitable and welcome for consideration in our journal, except from Applied Numerical Analysis articles. Also plain word articles without formulas and proofs are excluded. The list of possibly connected mathematical areas with this publication includes, but is not restricted to: Applied Analysis, Applied Functional Analysis, Approximation Theory, Asymptotic Analysis, Difference Equations, Differential Equations, Partial Differential Equations, Fourier Analysis, Fractals, Fuzzy Sets, Harmonic Analysis, Inequalities, Integral Equations, Measure Theory, Moment Theory, Neural Networks, Numerical Functional Analysis, Potential Theory, Probability Theory, Real and Complex Analysis, Signal Analysis, Special Functions, Splines, Stochastic Analysis, Stochastic Processes, Summability, Tomography, Wavelets, any combination of the above, e.t.c. "J.Computational Analysis and Applications" is a peer-reviewed Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信