{"title":"扭晶表示间同态的伽罗瓦等价性","authors":"Yoshiyasu Ozeki","doi":"10.1017/nmj.2016.68","DOIUrl":null,"url":null,"abstract":"Let $K$ be a complete discrete valuation field of mixed characteristic $(0,p)$ with perfect residue field. Let $(\\unicode[STIX]{x1D70B}_{n})_{n\\geqslant 0}$ be a system of $p$ -power roots of a uniformizer $\\unicode[STIX]{x1D70B}=\\unicode[STIX]{x1D70B}_{0}$ of $K$ with $\\unicode[STIX]{x1D70B}_{n+1}^{p}=\\unicode[STIX]{x1D70B}_{n}$ , and define $G_{s}$ (resp. $G_{\\infty }$ ) the absolute Galois group of $K(\\unicode[STIX]{x1D70B}_{s})$ (resp. $K_{\\infty }:=\\bigcup _{n\\geqslant 0}K(\\unicode[STIX]{x1D70B}_{n})$ ). In this paper, we study $G_{s}$ -equivariantness properties of $G_{\\infty }$ -equivariant homomorphisms between torsion crystalline representations.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2016-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/nmj.2016.68","citationCount":"2","resultStr":"{\"title\":\"ON GALOIS EQUIVARIANCE OF HOMOMORPHISMS BETWEEN TORSION CRYSTALLINE REPRESENTATIONS\",\"authors\":\"Yoshiyasu Ozeki\",\"doi\":\"10.1017/nmj.2016.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a complete discrete valuation field of mixed characteristic $(0,p)$ with perfect residue field. Let $(\\\\unicode[STIX]{x1D70B}_{n})_{n\\\\geqslant 0}$ be a system of $p$ -power roots of a uniformizer $\\\\unicode[STIX]{x1D70B}=\\\\unicode[STIX]{x1D70B}_{0}$ of $K$ with $\\\\unicode[STIX]{x1D70B}_{n+1}^{p}=\\\\unicode[STIX]{x1D70B}_{n}$ , and define $G_{s}$ (resp. $G_{\\\\infty }$ ) the absolute Galois group of $K(\\\\unicode[STIX]{x1D70B}_{s})$ (resp. $K_{\\\\infty }:=\\\\bigcup _{n\\\\geqslant 0}K(\\\\unicode[STIX]{x1D70B}_{n})$ ). In this paper, we study $G_{s}$ -equivariantness properties of $G_{\\\\infty }$ -equivariant homomorphisms between torsion crystalline representations.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2016-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/nmj.2016.68\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2016.68\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2016.68","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
ON GALOIS EQUIVARIANCE OF HOMOMORPHISMS BETWEEN TORSION CRYSTALLINE REPRESENTATIONS
Let $K$ be a complete discrete valuation field of mixed characteristic $(0,p)$ with perfect residue field. Let $(\unicode[STIX]{x1D70B}_{n})_{n\geqslant 0}$ be a system of $p$ -power roots of a uniformizer $\unicode[STIX]{x1D70B}=\unicode[STIX]{x1D70B}_{0}$ of $K$ with $\unicode[STIX]{x1D70B}_{n+1}^{p}=\unicode[STIX]{x1D70B}_{n}$ , and define $G_{s}$ (resp. $G_{\infty }$ ) the absolute Galois group of $K(\unicode[STIX]{x1D70B}_{s})$ (resp. $K_{\infty }:=\bigcup _{n\geqslant 0}K(\unicode[STIX]{x1D70B}_{n})$ ). In this paper, we study $G_{s}$ -equivariantness properties of $G_{\infty }$ -equivariant homomorphisms between torsion crystalline representations.
期刊介绍:
The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.