扭晶表示间同态的伽罗瓦等价性

IF 0.8 2区 数学 Q2 MATHEMATICS
Yoshiyasu Ozeki
{"title":"扭晶表示间同态的伽罗瓦等价性","authors":"Yoshiyasu Ozeki","doi":"10.1017/nmj.2016.68","DOIUrl":null,"url":null,"abstract":"Let $K$ be a complete discrete valuation field of mixed characteristic $(0,p)$ with perfect residue field. Let $(\\unicode[STIX]{x1D70B}_{n})_{n\\geqslant 0}$ be a system of $p$ -power roots of a uniformizer $\\unicode[STIX]{x1D70B}=\\unicode[STIX]{x1D70B}_{0}$ of $K$ with $\\unicode[STIX]{x1D70B}_{n+1}^{p}=\\unicode[STIX]{x1D70B}_{n}$ , and define $G_{s}$ (resp. $G_{\\infty }$ ) the absolute Galois group of $K(\\unicode[STIX]{x1D70B}_{s})$ (resp. $K_{\\infty }:=\\bigcup _{n\\geqslant 0}K(\\unicode[STIX]{x1D70B}_{n})$ ). In this paper, we study $G_{s}$ -equivariantness properties of $G_{\\infty }$ -equivariant homomorphisms between torsion crystalline representations.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2016-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/nmj.2016.68","citationCount":"2","resultStr":"{\"title\":\"ON GALOIS EQUIVARIANCE OF HOMOMORPHISMS BETWEEN TORSION CRYSTALLINE REPRESENTATIONS\",\"authors\":\"Yoshiyasu Ozeki\",\"doi\":\"10.1017/nmj.2016.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a complete discrete valuation field of mixed characteristic $(0,p)$ with perfect residue field. Let $(\\\\unicode[STIX]{x1D70B}_{n})_{n\\\\geqslant 0}$ be a system of $p$ -power roots of a uniformizer $\\\\unicode[STIX]{x1D70B}=\\\\unicode[STIX]{x1D70B}_{0}$ of $K$ with $\\\\unicode[STIX]{x1D70B}_{n+1}^{p}=\\\\unicode[STIX]{x1D70B}_{n}$ , and define $G_{s}$ (resp. $G_{\\\\infty }$ ) the absolute Galois group of $K(\\\\unicode[STIX]{x1D70B}_{s})$ (resp. $K_{\\\\infty }:=\\\\bigcup _{n\\\\geqslant 0}K(\\\\unicode[STIX]{x1D70B}_{n})$ ). In this paper, we study $G_{s}$ -equivariantness properties of $G_{\\\\infty }$ -equivariant homomorphisms between torsion crystalline representations.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2016-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/nmj.2016.68\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2016.68\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2016.68","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$K$为具有完美残差场的混合特征$(0,p)$的完全离散估值场。设$(\unicode[STIX]{x1D70B}_{n})_{n\geqslant 0}$为$K$与$\unicode[STIX]{x1D70B}_{n+1}^{p}=\unicode[STIX]{x1D70B}_{n}$的均变器$\unicode[STIX]{x1D70B}=\unicode[STIX]{x1D70B}_{0}$的$p$ -幂根系统,并定义$G_{s}$(参见:1)。$G_{\infty }$)的绝对伽罗瓦组$K(\unicode[STIX]{x1D70B}_{s})$(参见。$K_{\infty }:=\bigcup _{n\geqslant 0}K(\unicode[STIX]{x1D70B}_{n})$)。本文研究了扭转晶体表示之间$G_{\infty }$ -等变同态的$G_{s}$ -等变性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON GALOIS EQUIVARIANCE OF HOMOMORPHISMS BETWEEN TORSION CRYSTALLINE REPRESENTATIONS
Let $K$ be a complete discrete valuation field of mixed characteristic $(0,p)$ with perfect residue field. Let $(\unicode[STIX]{x1D70B}_{n})_{n\geqslant 0}$ be a system of $p$ -power roots of a uniformizer $\unicode[STIX]{x1D70B}=\unicode[STIX]{x1D70B}_{0}$ of $K$ with $\unicode[STIX]{x1D70B}_{n+1}^{p}=\unicode[STIX]{x1D70B}_{n}$ , and define $G_{s}$ (resp. $G_{\infty }$ ) the absolute Galois group of $K(\unicode[STIX]{x1D70B}_{s})$ (resp. $K_{\infty }:=\bigcup _{n\geqslant 0}K(\unicode[STIX]{x1D70B}_{n})$ ). In this paper, we study $G_{s}$ -equivariantness properties of $G_{\infty }$ -equivariant homomorphisms between torsion crystalline representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信