通过使用社交媒体来预测精神症状的社会节律

IF 3.2 Q1 Computer Science
K. Yokotani, Masanori Takano
{"title":"通过使用社交媒体来预测精神症状的社会节律","authors":"K. Yokotani, Masanori Takano","doi":"10.1017/ATSIP.2021.17","DOIUrl":null,"url":null,"abstract":"Social rhythms have been considered as relevant to mood disorders, but detailed analysis of social rhythms has been limited. Hence, we aim to assess social rhythms via social media use and predict users' psychiatric symptoms through their social rhythms. A two-wave survey was conducted in the Pigg Party, a popular Japanese avatar application. First and second waves of data were collected from 3504 and 658 Pigg Party users, respectively. The time stamps of their communication were sampled. Furthermore, the participants answered the General Health Questionnaire and perceived emotional support in the Pigg Party. The results indicated that social rhythms of users with many social supports were stable in a 24-h cycle. However, the rhythms of users with few social supports were disrupted. To predict psychiatric symptoms via social rhythms in the second-wave data, the first-wave data were used for training. We determined that fast Chirplet transformation was the optimal transformation for social rhythms, and the best accuracy scores on psychiatric symptoms and perceived emotional support in the second-wave data corresponded to 0.9231 and 0.7462, respectively. Hence, measurement of social rhythms via social media use enabled detailed understanding of emotional disturbance from the perspective of time-varying frequencies.","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Social rhythms measured via social media use for predicting psychiatric symptoms\",\"authors\":\"K. Yokotani, Masanori Takano\",\"doi\":\"10.1017/ATSIP.2021.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social rhythms have been considered as relevant to mood disorders, but detailed analysis of social rhythms has been limited. Hence, we aim to assess social rhythms via social media use and predict users' psychiatric symptoms through their social rhythms. A two-wave survey was conducted in the Pigg Party, a popular Japanese avatar application. First and second waves of data were collected from 3504 and 658 Pigg Party users, respectively. The time stamps of their communication were sampled. Furthermore, the participants answered the General Health Questionnaire and perceived emotional support in the Pigg Party. The results indicated that social rhythms of users with many social supports were stable in a 24-h cycle. However, the rhythms of users with few social supports were disrupted. To predict psychiatric symptoms via social rhythms in the second-wave data, the first-wave data were used for training. We determined that fast Chirplet transformation was the optimal transformation for social rhythms, and the best accuracy scores on psychiatric symptoms and perceived emotional support in the second-wave data corresponded to 0.9231 and 0.7462, respectively. Hence, measurement of social rhythms via social media use enabled detailed understanding of emotional disturbance from the perspective of time-varying frequencies.\",\"PeriodicalId\":44812,\"journal\":{\"name\":\"APSIPA Transactions on Signal and Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APSIPA Transactions on Signal and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/ATSIP.2021.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APSIPA Transactions on Signal and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/ATSIP.2021.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

社会节律被认为与情绪障碍有关,但对社会节律的详细分析有限。因此,我们的目的是通过社交媒体的使用来评估社会节奏,并通过他们的社会节奏来预测用户的精神症状。在日本流行的化身应用“小猪派对”中进行了两波调查。第一波和第二波数据分别来自3504名和658名小猪党用户。对他们通信的时间戳进行了采样。此外,参与者还回答了一般健康问卷和猪派对的情感支持感知。结果表明,具有多种社会支持的用户的社会节律在24小时周期内是稳定的。然而,缺乏社会支持的用户的节奏被打乱了。为了通过第二波数据中的社会节律预测精神症状,使用第一波数据进行训练。我们确定快速Chirplet转换是社会节律的最佳转换,第二波数据中精神症状和感知情感支持的最佳准确性得分分别为0.9231和0.7462。因此,通过社交媒体使用来测量社会节奏,可以从时变频率的角度详细了解情绪障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social rhythms measured via social media use for predicting psychiatric symptoms
Social rhythms have been considered as relevant to mood disorders, but detailed analysis of social rhythms has been limited. Hence, we aim to assess social rhythms via social media use and predict users' psychiatric symptoms through their social rhythms. A two-wave survey was conducted in the Pigg Party, a popular Japanese avatar application. First and second waves of data were collected from 3504 and 658 Pigg Party users, respectively. The time stamps of their communication were sampled. Furthermore, the participants answered the General Health Questionnaire and perceived emotional support in the Pigg Party. The results indicated that social rhythms of users with many social supports were stable in a 24-h cycle. However, the rhythms of users with few social supports were disrupted. To predict psychiatric symptoms via social rhythms in the second-wave data, the first-wave data were used for training. We determined that fast Chirplet transformation was the optimal transformation for social rhythms, and the best accuracy scores on psychiatric symptoms and perceived emotional support in the second-wave data corresponded to 0.9231 and 0.7462, respectively. Hence, measurement of social rhythms via social media use enabled detailed understanding of emotional disturbance from the perspective of time-varying frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APSIPA Transactions on Signal and Information Processing
APSIPA Transactions on Signal and Information Processing ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
8.60
自引率
6.20%
发文量
30
审稿时长
40 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信