基于图像处理的驾驶风格聚类

IF 1.5 Q3 BUSINESS, FINANCE
Rui Zhu, M. Wüthrich
{"title":"基于图像处理的驾驶风格聚类","authors":"Rui Zhu, M. Wüthrich","doi":"10.1017/S1748499520000317","DOIUrl":null,"url":null,"abstract":"Abstract It has become of key interest in the insurance industry to understand and extract information from telematics car driving data. Telematics car driving data of individual car drivers can be summarised in so-called speed–acceleration heatmaps. The aim of this study is to cluster such speed–acceleration heatmaps to different categories by analysing similarities and differences in these heatmaps. Making use of local smoothness properties, we propose to process these heatmaps as RGB images. Clustering can then be achieved by involving supervised information via a transfer learning approach using the pre-trained AlexNet to extract discriminative features. The K-means algorithm is then applied on these extracted discriminative features for clustering. The experiment results in an improvement of heatmap clustering compared to classical approaches.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":"15 1","pages":"276 - 290"},"PeriodicalIF":1.5000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1748499520000317","citationCount":"5","resultStr":"{\"title\":\"Clustering driving styles via image processing\",\"authors\":\"Rui Zhu, M. Wüthrich\",\"doi\":\"10.1017/S1748499520000317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It has become of key interest in the insurance industry to understand and extract information from telematics car driving data. Telematics car driving data of individual car drivers can be summarised in so-called speed–acceleration heatmaps. The aim of this study is to cluster such speed–acceleration heatmaps to different categories by analysing similarities and differences in these heatmaps. Making use of local smoothness properties, we propose to process these heatmaps as RGB images. Clustering can then be achieved by involving supervised information via a transfer learning approach using the pre-trained AlexNet to extract discriminative features. The K-means algorithm is then applied on these extracted discriminative features for clustering. The experiment results in an improvement of heatmap clustering compared to classical approaches.\",\"PeriodicalId\":44135,\"journal\":{\"name\":\"Annals of Actuarial Science\",\"volume\":\"15 1\",\"pages\":\"276 - 290\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S1748499520000317\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Actuarial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1748499520000317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1748499520000317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 5

摘要

从远程信息处理汽车驾驶数据中理解和提取信息已成为保险行业关注的焦点。远程信息处理汽车驾驶数据的个别汽车司机可以总结在所谓的速度-加速度热图。本研究的目的是通过分析这些热图的相似性和差异性,将这些速度-加速度热图聚类到不同的类别。利用局部平滑特性,我们建议将这些热图处理为RGB图像。然后,通过使用预训练的AlexNet提取判别特征的迁移学习方法,通过涉及监督信息来实现聚类。然后将K-means算法应用于这些提取的判别特征进行聚类。实验结果表明,与经典方法相比,该方法对热图聚类有了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering driving styles via image processing
Abstract It has become of key interest in the insurance industry to understand and extract information from telematics car driving data. Telematics car driving data of individual car drivers can be summarised in so-called speed–acceleration heatmaps. The aim of this study is to cluster such speed–acceleration heatmaps to different categories by analysing similarities and differences in these heatmaps. Making use of local smoothness properties, we propose to process these heatmaps as RGB images. Clustering can then be achieved by involving supervised information via a transfer learning approach using the pre-trained AlexNet to extract discriminative features. The K-means algorithm is then applied on these extracted discriminative features for clustering. The experiment results in an improvement of heatmap clustering compared to classical approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信