联合机会约束问题的鲁棒逼近

Q2 Computer Science
Ran DING , Guo-Xiang LI , Qi-Qiang LI
{"title":"联合机会约束问题的鲁棒逼近","authors":"Ran DING ,&nbsp;Guo-Xiang LI ,&nbsp;Qi-Qiang LI","doi":"10.1016/S1874-1029(15)30003-3","DOIUrl":null,"url":null,"abstract":"<div><p>Two new approximate formulations to joint chance-constrained optimization problems are proposed in this paper. The relationships of CVaR (conditional-value-at-risk), chance constrains and robust optimization are reviewed. Firstly, two new upper bounds on E((·) <sup>+</sup>) are proposed, where E stands for the expectation and <em>x<sup>+</sup></em> = max(0, <em>x</em>), based on which two approximate formulations for individual chance-constrained problems are derived. The approximations are proved to be the robust optimization with the corresponding uncertain sets. Then the approximations are extrapolated to joint chance-constrained problem. Finally numerical studies are performed to compare the solutions of individual and joint chance constraints approximations and the results demonstrate the validity of our method.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"41 10","pages":"Pages 1772-1777"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(15)30003-3","citationCount":"1","resultStr":"{\"title\":\"Robust Approximations to Joint Chance-constrained Problems\",\"authors\":\"Ran DING ,&nbsp;Guo-Xiang LI ,&nbsp;Qi-Qiang LI\",\"doi\":\"10.1016/S1874-1029(15)30003-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two new approximate formulations to joint chance-constrained optimization problems are proposed in this paper. The relationships of CVaR (conditional-value-at-risk), chance constrains and robust optimization are reviewed. Firstly, two new upper bounds on E((·) <sup>+</sup>) are proposed, where E stands for the expectation and <em>x<sup>+</sup></em> = max(0, <em>x</em>), based on which two approximate formulations for individual chance-constrained problems are derived. The approximations are proved to be the robust optimization with the corresponding uncertain sets. Then the approximations are extrapolated to joint chance-constrained problem. Finally numerical studies are performed to compare the solutions of individual and joint chance constraints approximations and the results demonstrate the validity of our method.</p></div>\",\"PeriodicalId\":35798,\"journal\":{\"name\":\"自动化学报\",\"volume\":\"41 10\",\"pages\":\"Pages 1772-1777\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1874-1029(15)30003-3\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自动化学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874102915300033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102915300033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了联合机会约束优化问题的两个新的近似表达式。讨论了条件风险值(CVaR)、机会约束和鲁棒优化之间的关系。首先,提出了E((·)+)的两个新的上界,其中E代表期望,x+ = max(0, x),并在此基础上导出了个别机会约束问题的两个近似表达式。证明了该逼近是具有相应不确定集的鲁棒优化。然后将近似外推到关节机会约束问题。最后通过数值计算比较了个别约束近似和联合约束近似的解,结果证明了本文方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Approximations to Joint Chance-constrained Problems

Two new approximate formulations to joint chance-constrained optimization problems are proposed in this paper. The relationships of CVaR (conditional-value-at-risk), chance constrains and robust optimization are reviewed. Firstly, two new upper bounds on E((·) +) are proposed, where E stands for the expectation and x+ = max(0, x), based on which two approximate formulations for individual chance-constrained problems are derived. The approximations are proved to be the robust optimization with the corresponding uncertain sets. Then the approximations are extrapolated to joint chance-constrained problem. Finally numerical studies are performed to compare the solutions of individual and joint chance constraints approximations and the results demonstrate the validity of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自动化学报
自动化学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍: ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信