基于自动参数估计的盒约束全变分图像恢复

Q2 Computer Science
Chuan HE , Chang-Hua HU , Wei ZHANG , Biao SHI
{"title":"基于自动参数估计的盒约束全变分图像恢复","authors":"Chuan HE ,&nbsp;Chang-Hua HU ,&nbsp;Wei ZHANG ,&nbsp;Biao SHI","doi":"10.1016/S1874-1029(14)60019-7","DOIUrl":null,"url":null,"abstract":"<div><p>The box constraints in image restoration have been arousing great attention, since the pixels of a digital image can attain only a finite number of values in a given dynamic range. This paper studies the box-constrained total-variation (TV) image restoration problem with automatic regularization parameter estimation. By adopting the variable splitting technique and introducing some auxiliary variables, the box-constrained TV minimization problem is decomposed into a sequence of subproblems which are easier to solve. Then the alternating direction method (ADM) is adopted to solve the related subproblems. By means of Morozov's discrepancy principle, the regularization parameter can be updated adaptively in a closed form in each iteration. Image restoration experiments indicate that with our strategies, more accurate solutions are achieved, especially for image with high percentage of pixel values lying on the boundary of the given dynamic range.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"40 8","pages":"Pages 1804-1811"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60019-7","citationCount":"8","resultStr":"{\"title\":\"Box-constrained Total-variation Image Restoration with Automatic Parameter Estimation\",\"authors\":\"Chuan HE ,&nbsp;Chang-Hua HU ,&nbsp;Wei ZHANG ,&nbsp;Biao SHI\",\"doi\":\"10.1016/S1874-1029(14)60019-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The box constraints in image restoration have been arousing great attention, since the pixels of a digital image can attain only a finite number of values in a given dynamic range. This paper studies the box-constrained total-variation (TV) image restoration problem with automatic regularization parameter estimation. By adopting the variable splitting technique and introducing some auxiliary variables, the box-constrained TV minimization problem is decomposed into a sequence of subproblems which are easier to solve. Then the alternating direction method (ADM) is adopted to solve the related subproblems. By means of Morozov's discrepancy principle, the regularization parameter can be updated adaptively in a closed form in each iteration. Image restoration experiments indicate that with our strategies, more accurate solutions are achieved, especially for image with high percentage of pixel values lying on the boundary of the given dynamic range.</p></div>\",\"PeriodicalId\":35798,\"journal\":{\"name\":\"自动化学报\",\"volume\":\"40 8\",\"pages\":\"Pages 1804-1811\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60019-7\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自动化学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874102914600197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102914600197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 8

摘要

由于数字图像的像素在给定的动态范围内只能达到有限数量的值,因此图像恢复中的盒约束一直受到人们的关注。研究了基于自动正则化参数估计的盒约束全变分(TV)图像恢复问题。采用变量拆分技术,引入辅助变量,将盒约束电视最小化问题分解为一系列易于求解的子问题。然后采用交替方向法(ADM)求解相关子问题。利用Morozov差异原理,正则化参数可以在每次迭代中以封闭形式自适应更新。图像恢复实验表明,采用我们的策略可以获得更精确的解,特别是对于位于给定动态范围边界的高像素值百分比的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Box-constrained Total-variation Image Restoration with Automatic Parameter Estimation

The box constraints in image restoration have been arousing great attention, since the pixels of a digital image can attain only a finite number of values in a given dynamic range. This paper studies the box-constrained total-variation (TV) image restoration problem with automatic regularization parameter estimation. By adopting the variable splitting technique and introducing some auxiliary variables, the box-constrained TV minimization problem is decomposed into a sequence of subproblems which are easier to solve. Then the alternating direction method (ADM) is adopted to solve the related subproblems. By means of Morozov's discrepancy principle, the regularization parameter can be updated adaptively in a closed form in each iteration. Image restoration experiments indicate that with our strategies, more accurate solutions are achieved, especially for image with high percentage of pixel values lying on the boundary of the given dynamic range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自动化学报
自动化学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍: ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信