{"title":"基于自动参数估计的盒约束全变分图像恢复","authors":"Chuan HE , Chang-Hua HU , Wei ZHANG , Biao SHI","doi":"10.1016/S1874-1029(14)60019-7","DOIUrl":null,"url":null,"abstract":"<div><p>The box constraints in image restoration have been arousing great attention, since the pixels of a digital image can attain only a finite number of values in a given dynamic range. This paper studies the box-constrained total-variation (TV) image restoration problem with automatic regularization parameter estimation. By adopting the variable splitting technique and introducing some auxiliary variables, the box-constrained TV minimization problem is decomposed into a sequence of subproblems which are easier to solve. Then the alternating direction method (ADM) is adopted to solve the related subproblems. By means of Morozov's discrepancy principle, the regularization parameter can be updated adaptively in a closed form in each iteration. Image restoration experiments indicate that with our strategies, more accurate solutions are achieved, especially for image with high percentage of pixel values lying on the boundary of the given dynamic range.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"40 8","pages":"Pages 1804-1811"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60019-7","citationCount":"8","resultStr":"{\"title\":\"Box-constrained Total-variation Image Restoration with Automatic Parameter Estimation\",\"authors\":\"Chuan HE , Chang-Hua HU , Wei ZHANG , Biao SHI\",\"doi\":\"10.1016/S1874-1029(14)60019-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The box constraints in image restoration have been arousing great attention, since the pixels of a digital image can attain only a finite number of values in a given dynamic range. This paper studies the box-constrained total-variation (TV) image restoration problem with automatic regularization parameter estimation. By adopting the variable splitting technique and introducing some auxiliary variables, the box-constrained TV minimization problem is decomposed into a sequence of subproblems which are easier to solve. Then the alternating direction method (ADM) is adopted to solve the related subproblems. By means of Morozov's discrepancy principle, the regularization parameter can be updated adaptively in a closed form in each iteration. Image restoration experiments indicate that with our strategies, more accurate solutions are achieved, especially for image with high percentage of pixel values lying on the boundary of the given dynamic range.</p></div>\",\"PeriodicalId\":35798,\"journal\":{\"name\":\"自动化学报\",\"volume\":\"40 8\",\"pages\":\"Pages 1804-1811\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60019-7\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自动化学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874102914600197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102914600197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Box-constrained Total-variation Image Restoration with Automatic Parameter Estimation
The box constraints in image restoration have been arousing great attention, since the pixels of a digital image can attain only a finite number of values in a given dynamic range. This paper studies the box-constrained total-variation (TV) image restoration problem with automatic regularization parameter estimation. By adopting the variable splitting technique and introducing some auxiliary variables, the box-constrained TV minimization problem is decomposed into a sequence of subproblems which are easier to solve. Then the alternating direction method (ADM) is adopted to solve the related subproblems. By means of Morozov's discrepancy principle, the regularization parameter can be updated adaptively in a closed form in each iteration. Image restoration experiments indicate that with our strategies, more accurate solutions are achieved, especially for image with high percentage of pixel values lying on the boundary of the given dynamic range.
自动化学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍:
ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.