Hao-Han WU , Fu-Jiang JIN , Lian-You LAI , Liang WANG
{"title":"基于Schrödinger方程的随机滤波算法","authors":"Hao-Han WU , Fu-Jiang JIN , Lian-You LAI , Liang WANG","doi":"10.1016/S1874-1029(14)60366-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper provides a new adaptive algorithm for single-step prediction by modeling the potential field of a one dimension Schrödinger wave equation using neural network. This new architecture is referred to as the recurrent quantum neural network (RQNN). The RQNN can filter the signal embedded with non-stationary noise without any priori knowledge of the shape of the signal and statistical properties of the noise. We compared the simulation results of the RQNN with a classical adaptive stochastic filter-RLS. It is shown that the RQNN is much more efficient in denoising signals embedded with Gaussian stationary, non-Gaussian stationary and Gaussian non-stationary noise such as DC, sinusoid, staircase and speech signals. The RQNN can enhance the signal to noise rate (SNR) by 20 dB, which is more than 10 dB given by the traditional technology when it denoising sinusoid signal.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"40 10","pages":"Pages 2370-2376"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60366-9","citationCount":"9","resultStr":"{\"title\":\"A Stochastic Filtering Algorithm Using Schrödinger Equation\",\"authors\":\"Hao-Han WU , Fu-Jiang JIN , Lian-You LAI , Liang WANG\",\"doi\":\"10.1016/S1874-1029(14)60366-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper provides a new adaptive algorithm for single-step prediction by modeling the potential field of a one dimension Schrödinger wave equation using neural network. This new architecture is referred to as the recurrent quantum neural network (RQNN). The RQNN can filter the signal embedded with non-stationary noise without any priori knowledge of the shape of the signal and statistical properties of the noise. We compared the simulation results of the RQNN with a classical adaptive stochastic filter-RLS. It is shown that the RQNN is much more efficient in denoising signals embedded with Gaussian stationary, non-Gaussian stationary and Gaussian non-stationary noise such as DC, sinusoid, staircase and speech signals. The RQNN can enhance the signal to noise rate (SNR) by 20 dB, which is more than 10 dB given by the traditional technology when it denoising sinusoid signal.</p></div>\",\"PeriodicalId\":35798,\"journal\":{\"name\":\"自动化学报\",\"volume\":\"40 10\",\"pages\":\"Pages 2370-2376\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60366-9\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自动化学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874102914603669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102914603669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
A Stochastic Filtering Algorithm Using Schrödinger Equation
This paper provides a new adaptive algorithm for single-step prediction by modeling the potential field of a one dimension Schrödinger wave equation using neural network. This new architecture is referred to as the recurrent quantum neural network (RQNN). The RQNN can filter the signal embedded with non-stationary noise without any priori knowledge of the shape of the signal and statistical properties of the noise. We compared the simulation results of the RQNN with a classical adaptive stochastic filter-RLS. It is shown that the RQNN is much more efficient in denoising signals embedded with Gaussian stationary, non-Gaussian stationary and Gaussian non-stationary noise such as DC, sinusoid, staircase and speech signals. The RQNN can enhance the signal to noise rate (SNR) by 20 dB, which is more than 10 dB given by the traditional technology when it denoising sinusoid signal.
自动化学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍:
ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.