控制点优化法对bsamizier曲线的显式g2约束归并

Q2 Computer Science
Li-Zheng LU , Yu-Yang QIU
{"title":"控制点优化法对bsamizier曲线的显式g2约束归并","authors":"Li-Zheng LU ,&nbsp;Yu-Yang QIU","doi":"10.1016/S1874-1029(14)60016-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a simple and explicit method for <em>G</em><sup>2</sup>-constrained merging of a pair of Bézier curves by minimizing the <em>l</em><sub>2</sub> distance defined in terms of control points. After expressing the <em>l</em><sub>2</sub> distance as a quadratic function of two parameters, the optimally merged curve can be explicitly obtained, which is achieved by control point optimization such that the <em>l</em><sub>2</sub> distance is minimized. The existence of the unique solution is shown by proving that the <em>l</em><sub>2</sub> distance is convex. The proposed method is explicit and efficient since it is non-iterative and expressed by known control points. Numerical examples demonstrate the effectiveness of the new method.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"40 7","pages":"Pages 1505-1509"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60016-1","citationCount":"0","resultStr":"{\"title\":\"Explicit G2-constrained Merging of a Pair of Bézier Curves by Control Point Optimization\",\"authors\":\"Li-Zheng LU ,&nbsp;Yu-Yang QIU\",\"doi\":\"10.1016/S1874-1029(14)60016-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a simple and explicit method for <em>G</em><sup>2</sup>-constrained merging of a pair of Bézier curves by minimizing the <em>l</em><sub>2</sub> distance defined in terms of control points. After expressing the <em>l</em><sub>2</sub> distance as a quadratic function of two parameters, the optimally merged curve can be explicitly obtained, which is achieved by control point optimization such that the <em>l</em><sub>2</sub> distance is minimized. The existence of the unique solution is shown by proving that the <em>l</em><sub>2</sub> distance is convex. The proposed method is explicit and efficient since it is non-iterative and expressed by known control points. Numerical examples demonstrate the effectiveness of the new method.</p></div>\",\"PeriodicalId\":35798,\"journal\":{\"name\":\"自动化学报\",\"volume\":\"40 7\",\"pages\":\"Pages 1505-1509\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60016-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自动化学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874102914600161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102914600161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文通过最小化用控制点定义的l2距离,给出了一种简单明了的基于g2约束的bsamizier曲线合并的方法。将l2距离表示为两个参数的二次函数后,可以显式地得到最优合并曲线,通过控制点优化使l2距离最小。通过证明l2距离是凸的,证明了唯一解的存在性。该方法不需要迭代,且由已知控制点表示,具有显式和高效的特点。数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit G2-constrained Merging of a Pair of Bézier Curves by Control Point Optimization

This paper presents a simple and explicit method for G2-constrained merging of a pair of Bézier curves by minimizing the l2 distance defined in terms of control points. After expressing the l2 distance as a quadratic function of two parameters, the optimally merged curve can be explicitly obtained, which is achieved by control point optimization such that the l2 distance is minimized. The existence of the unique solution is shown by proving that the l2 distance is convex. The proposed method is explicit and efficient since it is non-iterative and expressed by known control points. Numerical examples demonstrate the effectiveness of the new method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自动化学报
自动化学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍: ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信