{"title":"基于改进人工蜂群算法的AVR系统分数阶PID控制器优化设计","authors":"Dong-Li ZHANG , Ying-Gan TANG , Xin-Ping GUAN","doi":"10.1016/S1874-1029(14)60010-0","DOIUrl":null,"url":null,"abstract":"<div><p>Fractional order proportional-integral-derivative (FOPID) controller generalizes the standard PID controller. Compared to PID controller, FOPID controller has more parameters and the tuning of parameters is more complex. In this paper, an improved artificial bee colony algorithm, which combines cyclic exchange neighborhood with chaos (CNC-ABC), is proposed for the sake of tuning the parameters of FOPID controller. The characteristic of the proposed CNC-ABC exists in two folds: one is that it enlarges the search scope of the solution by utilizing cyclic exchange neighborhood techniques, speeds up the convergence of artificial bee colony algorithm (ABC). The other is that it has potential to get out of local optima by exploiting the ergodicity of chaos. The proposed CNC-ABC algorithm is used to optimize the parameters of the FOPID controller for an automatic voltage regulator (AVR) system. Numerical simulations show that the CNC-ABC FOPID controller has better performance than other FOPID and PID controllers.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"40 5","pages":"Pages 973-979"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60010-0","citationCount":"58","resultStr":"{\"title\":\"Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm\",\"authors\":\"Dong-Li ZHANG , Ying-Gan TANG , Xin-Ping GUAN\",\"doi\":\"10.1016/S1874-1029(14)60010-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fractional order proportional-integral-derivative (FOPID) controller generalizes the standard PID controller. Compared to PID controller, FOPID controller has more parameters and the tuning of parameters is more complex. In this paper, an improved artificial bee colony algorithm, which combines cyclic exchange neighborhood with chaos (CNC-ABC), is proposed for the sake of tuning the parameters of FOPID controller. The characteristic of the proposed CNC-ABC exists in two folds: one is that it enlarges the search scope of the solution by utilizing cyclic exchange neighborhood techniques, speeds up the convergence of artificial bee colony algorithm (ABC). The other is that it has potential to get out of local optima by exploiting the ergodicity of chaos. The proposed CNC-ABC algorithm is used to optimize the parameters of the FOPID controller for an automatic voltage regulator (AVR) system. Numerical simulations show that the CNC-ABC FOPID controller has better performance than other FOPID and PID controllers.</p></div>\",\"PeriodicalId\":35798,\"journal\":{\"name\":\"自动化学报\",\"volume\":\"40 5\",\"pages\":\"Pages 973-979\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60010-0\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自动化学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874102914600100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102914600100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm
Fractional order proportional-integral-derivative (FOPID) controller generalizes the standard PID controller. Compared to PID controller, FOPID controller has more parameters and the tuning of parameters is more complex. In this paper, an improved artificial bee colony algorithm, which combines cyclic exchange neighborhood with chaos (CNC-ABC), is proposed for the sake of tuning the parameters of FOPID controller. The characteristic of the proposed CNC-ABC exists in two folds: one is that it enlarges the search scope of the solution by utilizing cyclic exchange neighborhood techniques, speeds up the convergence of artificial bee colony algorithm (ABC). The other is that it has potential to get out of local optima by exploiting the ergodicity of chaos. The proposed CNC-ABC algorithm is used to optimize the parameters of the FOPID controller for an automatic voltage regulator (AVR) system. Numerical simulations show that the CNC-ABC FOPID controller has better performance than other FOPID and PID controllers.
自动化学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍:
ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.