{"title":"cones嵌入问题","authors":"Travis B. Russell","doi":"10.1017/9781108782081.013","DOIUrl":null,"url":null,"abstract":"We show that Connes’ embedding problem is equivalent to the weak Tsirelson problem in the setting of two-outcome synchronous correlation sets. We further show that the extreme points of two-outcome synchronous correlation sets can be realized using a certain class of universal C*-algebras. We examine these algebras in the three-experiment case and verify that the strong and weak Tsirelson problems have affirmative answers in that setting.","PeriodicalId":54524,"journal":{"name":"Quantum Information & Computation","volume":"20 1","pages":"361-374"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/9781108782081.013","citationCount":"2","resultStr":"{\"title\":\"The Connes embedding problem\",\"authors\":\"Travis B. Russell\",\"doi\":\"10.1017/9781108782081.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that Connes’ embedding problem is equivalent to the weak Tsirelson problem in the setting of two-outcome synchronous correlation sets. We further show that the extreme points of two-outcome synchronous correlation sets can be realized using a certain class of universal C*-algebras. We examine these algebras in the three-experiment case and verify that the strong and weak Tsirelson problems have affirmative answers in that setting.\",\"PeriodicalId\":54524,\"journal\":{\"name\":\"Quantum Information & Computation\",\"volume\":\"20 1\",\"pages\":\"361-374\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/9781108782081.013\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information & Computation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108782081.013\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information & Computation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/9781108782081.013","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We show that Connes’ embedding problem is equivalent to the weak Tsirelson problem in the setting of two-outcome synchronous correlation sets. We further show that the extreme points of two-outcome synchronous correlation sets can be realized using a certain class of universal C*-algebras. We examine these algebras in the three-experiment case and verify that the strong and weak Tsirelson problems have affirmative answers in that setting.
期刊介绍:
Quantum Information & Computation provides a forum for distribution of information in all areas of quantum information processing. Original articles, survey articles, reviews, tutorials, perspectives, and correspondences are all welcome. Computer science, physics and mathematics are covered. Both theory and experiments are included. Illustrative subjects include quantum algorithms, quantum information theory, quantum complexity theory, quantum cryptology, quantum communication and measurements, proposals and experiments on the implementation of quantum computation, communications, and entanglement in all areas of science including ion traps, cavity QED, photons, nuclear magnetic resonance, and solid-state proposals.