Abhishek Joshi, Prathyusha Mekala, Jitendra S. Sangwai
{"title":"四正丁基溴化铵水溶液中CH4、CO2和N2半水合物的相平衡模拟","authors":"Abhishek Joshi, Prathyusha Mekala, Jitendra S. Sangwai","doi":"10.1016/S1003-9953(11)60391-5","DOIUrl":null,"url":null,"abstract":"<div><p>Semiclathrate hydrates of tetra-<em>n</em>-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO<sub>2</sub> sequestration. Models for phase equilibria for these systems have not yet been developed in open literatures and thus require urgent attention. In this work, the first attempt has been made to model phase equilibria of semiclathrate hydrates of CH<sub>4</sub>, CO<sub>2</sub> and N<sub>2</sub> in aqueous solution of TBAB. A thermodynamic model for gas hydrate system as proposed by Chen and Guo has been extended for semiclathrate hydrates of gases in aqueous solution of TBAB. A correlation for the activity of water relating to the system temperature, concentration of TBAB in the system and the nature of guest gas molecule has been proposed. The model results have been validated against available experimental data on phase equilibria of semiclathrate hydrate systems of aqueous TBAB with different gases as guest molecule. The extended Chen and Guo's model is found to be suitable to explain the promotion effect of TBAB for the studied gaseous system such as, methane, carbon dioxide and nitrogen as a guest molecule. Additionally, a correlation for the increase in equilibrium formation temperature (hydrate promotion temperature, Δ<em>T</em><sub>p</sub>) of semiclathrate hydrate system with respect to pure gas hydrate system has been developed and applied to semiclathrate hydrate of TBAB with several gases as guest molecules. The developed correlation is found to predict the promotion effect satisfactorily for the system studied.</p></div>","PeriodicalId":56116,"journal":{"name":"Journal of Natural Gas Chemistry","volume":"21 4","pages":"Pages 459-465"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1003-9953(11)60391-5","citationCount":"52","resultStr":"{\"title\":\"Modeling phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of tetra-n-butyl ammonium bromide\",\"authors\":\"Abhishek Joshi, Prathyusha Mekala, Jitendra S. Sangwai\",\"doi\":\"10.1016/S1003-9953(11)60391-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Semiclathrate hydrates of tetra-<em>n</em>-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO<sub>2</sub> sequestration. Models for phase equilibria for these systems have not yet been developed in open literatures and thus require urgent attention. In this work, the first attempt has been made to model phase equilibria of semiclathrate hydrates of CH<sub>4</sub>, CO<sub>2</sub> and N<sub>2</sub> in aqueous solution of TBAB. A thermodynamic model for gas hydrate system as proposed by Chen and Guo has been extended for semiclathrate hydrates of gases in aqueous solution of TBAB. A correlation for the activity of water relating to the system temperature, concentration of TBAB in the system and the nature of guest gas molecule has been proposed. The model results have been validated against available experimental data on phase equilibria of semiclathrate hydrate systems of aqueous TBAB with different gases as guest molecule. The extended Chen and Guo's model is found to be suitable to explain the promotion effect of TBAB for the studied gaseous system such as, methane, carbon dioxide and nitrogen as a guest molecule. Additionally, a correlation for the increase in equilibrium formation temperature (hydrate promotion temperature, Δ<em>T</em><sub>p</sub>) of semiclathrate hydrate system with respect to pure gas hydrate system has been developed and applied to semiclathrate hydrate of TBAB with several gases as guest molecules. The developed correlation is found to predict the promotion effect satisfactorily for the system studied.</p></div>\",\"PeriodicalId\":56116,\"journal\":{\"name\":\"Journal of Natural Gas Chemistry\",\"volume\":\"21 4\",\"pages\":\"Pages 459-465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1003-9953(11)60391-5\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1003995311603915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003995311603915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of tetra-n-butyl ammonium bromide
Semiclathrate hydrates of tetra-n-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO2 sequestration. Models for phase equilibria for these systems have not yet been developed in open literatures and thus require urgent attention. In this work, the first attempt has been made to model phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of TBAB. A thermodynamic model for gas hydrate system as proposed by Chen and Guo has been extended for semiclathrate hydrates of gases in aqueous solution of TBAB. A correlation for the activity of water relating to the system temperature, concentration of TBAB in the system and the nature of guest gas molecule has been proposed. The model results have been validated against available experimental data on phase equilibria of semiclathrate hydrate systems of aqueous TBAB with different gases as guest molecule. The extended Chen and Guo's model is found to be suitable to explain the promotion effect of TBAB for the studied gaseous system such as, methane, carbon dioxide and nitrogen as a guest molecule. Additionally, a correlation for the increase in equilibrium formation temperature (hydrate promotion temperature, ΔTp) of semiclathrate hydrate system with respect to pure gas hydrate system has been developed and applied to semiclathrate hydrate of TBAB with several gases as guest molecules. The developed correlation is found to predict the promotion effect satisfactorily for the system studied.