{"title":"关于涉及欧拉积分函数的和","authors":"I. Kiuchi, Yuki Tsuruta","doi":"10.1017/s0004972723000825","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723000825_inline1.png\" />\n\t\t<jats:tex-math>\n$\\gcd (n_{1},\\ldots ,n_{k})$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> denote the greatest common divisor of positive integers <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723000825_inline2.png\" />\n\t\t<jats:tex-math>\n$n_{1},\\ldots ,n_{k}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723000825_inline3.png\" />\n\t\t<jats:tex-math>\n$\\phi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be the Euler totient function. For any real number <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723000825_inline4.png\" />\n\t\t<jats:tex-math>\n$x>3$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and any integer <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723000825_inline5.png\" />\n\t\t<jats:tex-math>\n$k\\geq 2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, we investigate the asymptotic behaviour of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723000825_inline6.png\" />\n\t\t<jats:tex-math>\n$\\sum _{n_{1}\\ldots n_{k}\\leq x}\\phi (\\gcd (n_{1},\\ldots ,n_{k})). $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula></jats:p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"18 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON SUMS INVOLVING THE EULER TOTIENT FUNCTION\",\"authors\":\"I. Kiuchi, Yuki Tsuruta\",\"doi\":\"10.1017/s0004972723000825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>Let <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723000825_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\gcd (n_{1},\\\\ldots ,n_{k})$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> denote the greatest common divisor of positive integers <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723000825_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$n_{1},\\\\ldots ,n_{k}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and let <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723000825_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\phi $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> be the Euler totient function. For any real number <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723000825_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$x>3$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and any integer <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723000825_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$k\\\\geq 2$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, we investigate the asymptotic behaviour of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723000825_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\sum _{n_{1}\\\\ldots n_{k}\\\\leq x}\\\\phi (\\\\gcd (n_{1},\\\\ldots ,n_{k})). $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula></jats:p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723000825\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723000825","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let
$\gcd (n_{1},\ldots ,n_{k})$
denote the greatest common divisor of positive integers
$n_{1},\ldots ,n_{k}$
and let
$\phi $
be the Euler totient function. For any real number
$x>3$
and any integer
$k\geq 2$
, we investigate the asymptotic behaviour of
$\sum _{n_{1}\ldots n_{k}\leq x}\phi (\gcd (n_{1},\ldots ,n_{k})). $
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society