k理论,实在性和对偶性

Drew Heard, Vesna Stojanoska
{"title":"k理论,实在性和对偶性","authors":"Drew Heard, Vesna Stojanoska","doi":"10.1017/is014007001jkt275","DOIUrl":null,"url":null,"abstract":"We present a new proof of Anderson's result that the real K -theory spectrum is Anderson self-dual up to a fourfold suspension shift; more strongly, we show that the Anderson dual of the complex K -theory spectrum KU is C 2 -equivariantly equivalent to Σ 4 KU , where C 2 acts by complex conjugation. We give an algebro-geometric interpretation of this result in spectrally derived algebraic geometry and apply the result to calculate 2-primary Gross-Hopkins duality at height 1. From the latter we obtain a new computation of the group of exotic elements of the K (1)-local Picard group.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"14 1","pages":"526-555"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/is014007001jkt275","citationCount":"32","resultStr":"{\"title\":\"K-theory, reality, and duality\",\"authors\":\"Drew Heard, Vesna Stojanoska\",\"doi\":\"10.1017/is014007001jkt275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new proof of Anderson's result that the real K -theory spectrum is Anderson self-dual up to a fourfold suspension shift; more strongly, we show that the Anderson dual of the complex K -theory spectrum KU is C 2 -equivariantly equivalent to Σ 4 KU , where C 2 acts by complex conjugation. We give an algebro-geometric interpretation of this result in spectrally derived algebraic geometry and apply the result to calculate 2-primary Gross-Hopkins duality at height 1. From the latter we obtain a new computation of the group of exotic elements of the K (1)-local Picard group.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"14 1\",\"pages\":\"526-555\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/is014007001jkt275\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/is014007001jkt275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/is014007001jkt275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

我们给出了一个新的证明,证明了实K理论谱是安德森自对偶,直至四倍悬移;更强的是,我们证明了复K理论谱KU的Anderson对偶是c2 -等价于Σ 4 KU,其中c2通过复共轭作用。我们给出了这一结果在谱推导代数几何中的代数-几何解释,并将结果应用于计算高度为1的二初级Gross-Hopkins对偶。由后者得到了K(1)-局部Picard群的奇异元群的一种新的计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-theory, reality, and duality
We present a new proof of Anderson's result that the real K -theory spectrum is Anderson self-dual up to a fourfold suspension shift; more strongly, we show that the Anderson dual of the complex K -theory spectrum KU is C 2 -equivariantly equivalent to Σ 4 KU , where C 2 acts by complex conjugation. We give an algebro-geometric interpretation of this result in spectrally derived algebraic geometry and apply the result to calculate 2-primary Gross-Hopkins duality at height 1. From the latter we obtain a new computation of the group of exotic elements of the K (1)-local Picard group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信