用代数协数法求连接K理论的一个thomas - porteous公式

Thomas Hudson
{"title":"用代数协数法求连接K理论的一个thomas - porteous公式","authors":"Thomas Hudson","doi":"10.1017/is014005031jkt266","DOIUrl":null,"url":null,"abstract":"We prove a formula for the push-forward class of Bott-Samelson resolutions in the algebraic cobordism ring of the flag bundle. We specialise our formula to connective K-theory providing a geometric interpretation to the double β-polynomials of Fomin and Kirillov by computing the fundamental classes of Schubert varieties. As a corollary we obtain a Thom-Porteous formula generalising those of the Chow ring and of the Grothendieck ring of vector bundles.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"14 1","pages":"343-369"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/is014005031jkt266","citationCount":"33","resultStr":"{\"title\":\"A Thom-Porteous formula for connective K -theory using algebraic cobordism\",\"authors\":\"Thomas Hudson\",\"doi\":\"10.1017/is014005031jkt266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a formula for the push-forward class of Bott-Samelson resolutions in the algebraic cobordism ring of the flag bundle. We specialise our formula to connective K-theory providing a geometric interpretation to the double β-polynomials of Fomin and Kirillov by computing the fundamental classes of Schubert varieties. As a corollary we obtain a Thom-Porteous formula generalising those of the Chow ring and of the Grothendieck ring of vector bundles.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"14 1\",\"pages\":\"343-369\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/is014005031jkt266\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/is014005031jkt266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/is014005031jkt266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

证明了旗束代数配环上bot - samelson解析的推前类的一个公式。我们将我们的公式专门用于连接k理论,通过计算Schubert变体的基本类,为Fomin和Kirillov的双重β-多项式提供几何解释。作为推论,我们得到了推广向量束的Chow环和Grothendieck环的公式的一个thomas - porteous公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Thom-Porteous formula for connective K -theory using algebraic cobordism
We prove a formula for the push-forward class of Bott-Samelson resolutions in the algebraic cobordism ring of the flag bundle. We specialise our formula to connective K-theory providing a geometric interpretation to the double β-polynomials of Fomin and Kirillov by computing the fundamental classes of Schubert varieties. As a corollary we obtain a Thom-Porteous formula generalising those of the Chow ring and of the Grothendieck ring of vector bundles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信