{"title":"用代数协数法求连接K理论的一个thomas - porteous公式","authors":"Thomas Hudson","doi":"10.1017/is014005031jkt266","DOIUrl":null,"url":null,"abstract":"We prove a formula for the push-forward class of Bott-Samelson resolutions in the algebraic cobordism ring of the flag bundle. We specialise our formula to connective K-theory providing a geometric interpretation to the double β-polynomials of Fomin and Kirillov by computing the fundamental classes of Schubert varieties. As a corollary we obtain a Thom-Porteous formula generalising those of the Chow ring and of the Grothendieck ring of vector bundles.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"14 1","pages":"343-369"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/is014005031jkt266","citationCount":"33","resultStr":"{\"title\":\"A Thom-Porteous formula for connective K -theory using algebraic cobordism\",\"authors\":\"Thomas Hudson\",\"doi\":\"10.1017/is014005031jkt266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a formula for the push-forward class of Bott-Samelson resolutions in the algebraic cobordism ring of the flag bundle. We specialise our formula to connective K-theory providing a geometric interpretation to the double β-polynomials of Fomin and Kirillov by computing the fundamental classes of Schubert varieties. As a corollary we obtain a Thom-Porteous formula generalising those of the Chow ring and of the Grothendieck ring of vector bundles.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"14 1\",\"pages\":\"343-369\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/is014005031jkt266\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/is014005031jkt266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/is014005031jkt266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Thom-Porteous formula for connective K -theory using algebraic cobordism
We prove a formula for the push-forward class of Bott-Samelson resolutions in the algebraic cobordism ring of the flag bundle. We specialise our formula to connective K-theory providing a geometric interpretation to the double β-polynomials of Fomin and Kirillov by computing the fundamental classes of Schubert varieties. As a corollary we obtain a Thom-Porteous formula generalising those of the Chow ring and of the Grothendieck ring of vector bundles.