谱不变量的一个有趣例子

M. Benameur, J. Heitsch, C. Wahl
{"title":"谱不变量的一个有趣例子","authors":"M. Benameur, J. Heitsch, C. Wahl","doi":"10.1017/IS014002020JKT255","DOIUrl":null,"url":null,"abstract":"In [HL99], the heat operator of a Bismut superconnection for a family of generalized Dirac operators is defined along the leaves of a foliation with Hausdorff groupoid. The Novikov-Shubin invariants of the Dirac operators were assumed greater than three times the codimension of the foliation. It was then shown that the associated heat operator converges to the Chern character of the index bundle of the operator. In [BH08], this result was improved by reducing the requirement on the Novikov-Shubin invariants to one half of the codimension. In this paper, we construct examples which show that this is the best possible result.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"13 1","pages":"305-311"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS014002020JKT255","citationCount":"5","resultStr":"{\"title\":\"An interesting example for spectral invariants\",\"authors\":\"M. Benameur, J. Heitsch, C. Wahl\",\"doi\":\"10.1017/IS014002020JKT255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [HL99], the heat operator of a Bismut superconnection for a family of generalized Dirac operators is defined along the leaves of a foliation with Hausdorff groupoid. The Novikov-Shubin invariants of the Dirac operators were assumed greater than three times the codimension of the foliation. It was then shown that the associated heat operator converges to the Chern character of the index bundle of the operator. In [BH08], this result was improved by reducing the requirement on the Novikov-Shubin invariants to one half of the codimension. In this paper, we construct examples which show that this is the best possible result.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"13 1\",\"pages\":\"305-311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/IS014002020JKT255\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/IS014002020JKT255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS014002020JKT255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在[HL99]中,定义了具有Hausdorff群的叶上沿广义Dirac算子族的Bismut超连接的热算子。假设Dirac算子的Novikov-Shubin不变量大于叶理余维的三倍。然后证明了相关热算子收敛于该算子的指标束的陈氏特征。在[BH08]中,通过将对Novikov-Shubin不变量的要求降低到余维的一半,改进了这一结果。在本文中,我们构造了一些例子来证明这是最好的可能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An interesting example for spectral invariants
In [HL99], the heat operator of a Bismut superconnection for a family of generalized Dirac operators is defined along the leaves of a foliation with Hausdorff groupoid. The Novikov-Shubin invariants of the Dirac operators were assumed greater than three times the codimension of the foliation. It was then shown that the associated heat operator converges to the Chern character of the index bundle of the operator. In [BH08], this result was improved by reducing the requirement on the Novikov-Shubin invariants to one half of the codimension. In this paper, we construct examples which show that this is the best possible result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信