满足Maurer-Cartan方程的代数循环和曲线的单幂基本群

Majid Hadian
{"title":"满足Maurer-Cartan方程的代数循环和曲线的单幂基本群","authors":"Majid Hadian","doi":"10.1017/IS013002015JKT216","DOIUrl":null,"url":null,"abstract":"We address the question of lifting the etale unipotent fundamental group of curves to the level of algebraic cycles and show that a sequence of algebraic cycles whose sum satisfies the Maurer-Cartan equation would do the job. For any elliptic curve with the origin removed and the curve , we construct such a sequence of algebraic cycles whose image under the cycle map gives rise to the etale unipotent fundamental group of the curve.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"11 1","pages":"351-392"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS013002015JKT216","citationCount":"1","resultStr":"{\"title\":\"Algebraic cycles satisfying the Maurer-Cartan equation and the unipotent fundamental group of curves\",\"authors\":\"Majid Hadian\",\"doi\":\"10.1017/IS013002015JKT216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the question of lifting the etale unipotent fundamental group of curves to the level of algebraic cycles and show that a sequence of algebraic cycles whose sum satisfies the Maurer-Cartan equation would do the job. For any elliptic curve with the origin removed and the curve , we construct such a sequence of algebraic cycles whose image under the cycle map gives rise to the etale unipotent fundamental group of the curve.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"11 1\",\"pages\":\"351-392\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/IS013002015JKT216\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/IS013002015JKT216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS013002015JKT216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们解决了将曲线的单幂基本群提升到代数循环水平的问题,并证明了其和满足Maurer-Cartan方程的代数循环序列可以完成这项工作。对于任意消去原点的椭圆曲线和曲线,构造了这样一个代数循环序列,它在循环映射下的像产生了曲线的惟一幂等基群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic cycles satisfying the Maurer-Cartan equation and the unipotent fundamental group of curves
We address the question of lifting the etale unipotent fundamental group of curves to the level of algebraic cycles and show that a sequence of algebraic cycles whose sum satisfies the Maurer-Cartan equation would do the job. For any elliptic curve with the origin removed and the curve , we construct such a sequence of algebraic cycles whose image under the cycle map gives rise to the etale unipotent fundamental group of the curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信