带系数的几何k -同调II:解析理论与同构

R. Deeley
{"title":"带系数的几何k -同调II:解析理论与同构","authors":"R. Deeley","doi":"10.1017/IS013007003JKT235","DOIUrl":null,"url":null,"abstract":"We discuss the analytic aspects of the geometric model for Khomology with coefficients in Z/kZ constructed in [11]. In particular, using results of Rosenberg and Schochet, we construct a map from this geometric model to its analytic counterpart. Moreover, we show that this map is an isomorphism in the case of a finite CW-complex. The relationship between this map and the Freed-Melrose index theorem is also discussed. Many of these results are analogous to those of Baum and Douglas in the case of spinc manifolds, geometric K-homology, and Atiyah-Singer index theorem.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"12 1","pages":"235-256"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS013007003JKT235","citationCount":"6","resultStr":"{\"title\":\"Geometric K-homology with coefficients II: The Analytic Theory and Isomorphism\",\"authors\":\"R. Deeley\",\"doi\":\"10.1017/IS013007003JKT235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the analytic aspects of the geometric model for Khomology with coefficients in Z/kZ constructed in [11]. In particular, using results of Rosenberg and Schochet, we construct a map from this geometric model to its analytic counterpart. Moreover, we show that this map is an isomorphism in the case of a finite CW-complex. The relationship between this map and the Freed-Melrose index theorem is also discussed. Many of these results are analogous to those of Baum and Douglas in the case of spinc manifolds, geometric K-homology, and Atiyah-Singer index theorem.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"12 1\",\"pages\":\"235-256\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/IS013007003JKT235\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/IS013007003JKT235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS013007003JKT235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

讨论了在[11]中构造的系数为Z/kZ的同调几何模型的解析方面。特别是,利用Rosenberg和Schochet的结果,我们构建了一个从这个几何模型到它的解析对应的映射。此外,我们还证明了在有限cw复形的情况下,这个映射是同构的。讨论了该映射与Freed-Melrose指标定理的关系。其中许多结果与Baum和Douglas在自旋流形、几何k -同调和Atiyah-Singer指数定理中的结果类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric K-homology with coefficients II: The Analytic Theory and Isomorphism
We discuss the analytic aspects of the geometric model for Khomology with coefficients in Z/kZ constructed in [11]. In particular, using results of Rosenberg and Schochet, we construct a map from this geometric model to its analytic counterpart. Moreover, we show that this map is an isomorphism in the case of a finite CW-complex. The relationship between this map and the Freed-Melrose index theorem is also discussed. Many of these results are analogous to those of Baum and Douglas in the case of spinc manifolds, geometric K-homology, and Atiyah-Singer index theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信