{"title":"自双混合扩展","authors":"D. Bertrand","doi":"10.1017/IS013001030JKT213","DOIUrl":null,"url":null,"abstract":"We study self-duality of Grothendieck's blended extensions (extensions panach\\'ees) in the context of a tannakian category. The set of equivalence classes of symmetric, resp. antisymmetric, blended extensions is naturally endowed with a torsor structure, which enables us to compute the unipotent radical of the associated monodromy groups in various situations","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"11 1","pages":"393-411"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS013001030JKT213","citationCount":"7","resultStr":"{\"title\":\"Extensions panachées autoduales\",\"authors\":\"D. Bertrand\",\"doi\":\"10.1017/IS013001030JKT213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study self-duality of Grothendieck's blended extensions (extensions panach\\\\'ees) in the context of a tannakian category. The set of equivalence classes of symmetric, resp. antisymmetric, blended extensions is naturally endowed with a torsor structure, which enables us to compute the unipotent radical of the associated monodromy groups in various situations\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"11 1\",\"pages\":\"393-411\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/IS013001030JKT213\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/IS013001030JKT213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS013001030JKT213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study self-duality of Grothendieck's blended extensions (extensions panach\'ees) in the context of a tannakian category. The set of equivalence classes of symmetric, resp. antisymmetric, blended extensions is naturally endowed with a torsor structure, which enables us to compute the unipotent radical of the associated monodromy groups in various situations