在Cuntz和Quillen的消去定理之后的循环上同

J. Brodzki
{"title":"在Cuntz和Quillen的消去定理之后的循环上同","authors":"J. Brodzki","doi":"10.1017/IS012011006JKT202","DOIUrl":null,"url":null,"abstract":"The excision theorem of Cuntz and Quillen established the existence of a six term exact sequence in the bivariant periodic cyclic cohomology HP*(–,–) associated with an arbitrary algebra extension 0 ? S ? P ? Q ? 0. This remarkable result enabled far reaching developments in the purely algebraic periodic cyclic cohomology. It also provided a new formalism that led to the creation of new versions of this theory for topological and bornological algebras. In this article we outline some of the developments that resulted from this breakthrough.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"11 1","pages":"575-598"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS012011006JKT202","citationCount":"0","resultStr":"{\"title\":\"Cyclic cohomology after the excision theorem of Cuntz and Quillen\",\"authors\":\"J. Brodzki\",\"doi\":\"10.1017/IS012011006JKT202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The excision theorem of Cuntz and Quillen established the existence of a six term exact sequence in the bivariant periodic cyclic cohomology HP*(–,–) associated with an arbitrary algebra extension 0 ? S ? P ? Q ? 0. This remarkable result enabled far reaching developments in the purely algebraic periodic cyclic cohomology. It also provided a new formalism that led to the creation of new versions of this theory for topological and bornological algebras. In this article we outline some of the developments that resulted from this breakthrough.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"11 1\",\"pages\":\"575-598\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/IS012011006JKT202\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/IS012011006JKT202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS012011006JKT202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Cuntz和Quillen的切除定理证明了任意代数扩展0 ?的双变周期循环上同调HP*(-, -)中六项精确序列的存在性。年代?P ?问吗?0. 这一显著的结果使纯代数周期循环上同的研究有了深远的发展。它还提供了一种新的形式主义,导致了拓扑代数和bornological代数理论的新版本的创建。在本文中,我们概述了这一突破所带来的一些发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic cohomology after the excision theorem of Cuntz and Quillen
The excision theorem of Cuntz and Quillen established the existence of a six term exact sequence in the bivariant periodic cyclic cohomology HP*(–,–) associated with an arbitrary algebra extension 0 ? S ? P ? Q ? 0. This remarkable result enabled far reaching developments in the purely algebraic periodic cyclic cohomology. It also provided a new formalism that led to the creation of new versions of this theory for topological and bornological algebras. In this article we outline some of the developments that resulted from this breakthrough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信