奎伦对亚当斯猜想的研究

W. Dwyer
{"title":"奎伦对亚当斯猜想的研究","authors":"W. Dwyer","doi":"10.1017/IS011012012JKT207","DOIUrl":null,"url":null,"abstract":"In the 1960's and 1970's, the Adams Conjecture g- ured prominently both in homotopy theory and in geometric topol- ogy. Quillen sketched one way to attack the conjecture and then proved it with an entirely dierent line of argument. Both of his approaches led to spectacular and beautiful new mathematics. 1. Background on the Adams Conjecture For a nite CW -complex X, let KO(X) be the Grothendieck group of nite-dimensional real vector bundles over X, and J(X) the quo- tient of KO(X) by the subgroup generated by dierences , where and are vector bundles whose associated sphere bundles are","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"11 1","pages":"517-526"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS011012012JKT207","citationCount":"1","resultStr":"{\"title\":\"QUILLEN'S WORK ON THE ADAMS CONJECTURE\",\"authors\":\"W. Dwyer\",\"doi\":\"10.1017/IS011012012JKT207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the 1960's and 1970's, the Adams Conjecture g- ured prominently both in homotopy theory and in geometric topol- ogy. Quillen sketched one way to attack the conjecture and then proved it with an entirely dierent line of argument. Both of his approaches led to spectacular and beautiful new mathematics. 1. Background on the Adams Conjecture For a nite CW -complex X, let KO(X) be the Grothendieck group of nite-dimensional real vector bundles over X, and J(X) the quo- tient of KO(X) by the subgroup generated by dierences , where and are vector bundles whose associated sphere bundles are\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"11 1\",\"pages\":\"517-526\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/IS011012012JKT207\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/IS011012012JKT207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS011012012JKT207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在20世纪六七十年代,亚当斯猜想在同伦理论和几何拓扑学中都占有重要地位。Quillen概述了一种攻击这个猜想的方法,然后用一种完全不同的论证来证明它。他的两种方法都带来了壮观而美丽的新数学。1. 对于一维CW -复形X,设KO(X)为X上的三维实向量束的Grothendieck群,J(X)为KO(X)的由差量生成的子群组成的向量束,其中和为其相关球束为的向量束
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QUILLEN'S WORK ON THE ADAMS CONJECTURE
In the 1960's and 1970's, the Adams Conjecture g- ured prominently both in homotopy theory and in geometric topol- ogy. Quillen sketched one way to attack the conjecture and then proved it with an entirely dierent line of argument. Both of his approaches led to spectacular and beautiful new mathematics. 1. Background on the Adams Conjecture For a nite CW -complex X, let KO(X) be the Grothendieck group of nite-dimensional real vector bundles over X, and J(X) the quo- tient of KO(X) by the subgroup generated by dierences , where and are vector bundles whose associated sphere bundles are
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信