Karoubi调节器与p进Borel调节器之比较

Georg Tamme
{"title":"Karoubi调节器与p进Borel调节器之比较","authors":"Georg Tamme","doi":"10.1017/IS011010026JKT165","DOIUrl":null,"url":null,"abstract":"In this paper we prove the p-adic analogue of a result of Hamida [11], namely \nthat the p-adic Borel regulator introduced by Huber and Kings for the Ktheory \nof a p-adic number field equals Karoubi’s p-adic regulator up to an \nexplicit rational factor.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"54 1","pages":"579-600"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS011010026JKT165","citationCount":"3","resultStr":"{\"title\":\"Comparison of Karoubi's regulator and the p-adic Borel regulator\",\"authors\":\"Georg Tamme\",\"doi\":\"10.1017/IS011010026JKT165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove the p-adic analogue of a result of Hamida [11], namely \\nthat the p-adic Borel regulator introduced by Huber and Kings for the Ktheory \\nof a p-adic number field equals Karoubi’s p-adic regulator up to an \\nexplicit rational factor.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"54 1\",\"pages\":\"579-600\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/IS011010026JKT165\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/IS011010026JKT165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS011010026JKT165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文证明了Hamida[11]的一个结果的p进模拟,即Huber和Kings为p进数域的k理论引入的p进Borel调节器在一个显式有理因子上等于Karoubi的p进调节器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Karoubi's regulator and the p-adic Borel regulator
In this paper we prove the p-adic analogue of a result of Hamida [11], namely that the p-adic Borel regulator introduced by Huber and Kings for the Ktheory of a p-adic number field equals Karoubi’s p-adic regulator up to an explicit rational factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信