关于Ã 2群的边界C *-代数的k理论

O. King, G. Robertson
{"title":"关于à 2群的边界C *-代数的k理论","authors":"O. King, G. Robertson","doi":"10.1017/IS011005004JKT158","DOIUrl":null,"url":null,"abstract":"Let Γ be an A 2 subgroup of PGL 3 ( ), where is a local field with residue field of order q . The module of coinvariants C ( ,ℤ) Γ is shown to be finite, where is the projective plane over . If the group Γ is of Tits type and if q ≢ 1 (mod 3) then the exact value of the order of the class [1] K 0 in the K-theory of the (full) crossed product C *-algebra C (Ω) ⋊ Γ is determined, where Ω is the Furstenberg boundary of PGL 3 ( ). For groups of Tits type, this verifies a conjecture of G. Robertson and T. Steger.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"9 1","pages":"521-536"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS011005004JKT158","citationCount":"0","resultStr":"{\"title\":\"On the K-theory of boundary C *-algebras of à 2 groups\",\"authors\":\"O. King, G. Robertson\",\"doi\":\"10.1017/IS011005004JKT158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Γ be an A 2 subgroup of PGL 3 ( ), where is a local field with residue field of order q . The module of coinvariants C ( ,ℤ) Γ is shown to be finite, where is the projective plane over . If the group Γ is of Tits type and if q ≢ 1 (mod 3) then the exact value of the order of the class [1] K 0 in the K-theory of the (full) crossed product C *-algebra C (Ω) ⋊ Γ is determined, where Ω is the Furstenberg boundary of PGL 3 ( ). For groups of Tits type, this verifies a conjecture of G. Robertson and T. Steger.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"9 1\",\"pages\":\"521-536\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/IS011005004JKT158\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/IS011005004JKT158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS011005004JKT158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设Γ为PGL 3()的a2子群,其中为一个残余域为q阶的局部域。证明了常变量C (, 0) Γ的模是有限的,其中为投影平面。如果群Γ为Tits类型,如果q 1 (mod 3),则确定(全)交叉积C *-代数C (Ω) Γ的K理论中类[1]K 0阶的精确值,其中Ω为PGL 3()的Furstenberg边界。对于Tits类型的群,这证实了G. Robertson和T. Steger的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the K-theory of boundary C *-algebras of à 2 groups
Let Γ be an A 2 subgroup of PGL 3 ( ), where is a local field with residue field of order q . The module of coinvariants C ( ,ℤ) Γ is shown to be finite, where is the projective plane over . If the group Γ is of Tits type and if q ≢ 1 (mod 3) then the exact value of the order of the class [1] K 0 in the K-theory of the (full) crossed product C *-algebra C (Ω) ⋊ Γ is determined, where Ω is the Furstenberg boundary of PGL 3 ( ). For groups of Tits type, this verifies a conjecture of G. Robertson and T. Steger.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信