简化Steenrod运算和奇异点的求解

Olivier Haution
{"title":"简化Steenrod运算和奇异点的求解","authors":"Olivier Haution","doi":"10.1017/is011006030jkt162","DOIUrl":null,"url":null,"abstract":"We give a new construction of a weak form of Steenrod operations for Chow groups modulo a prime number p for a certain class of varieties. This class contains projective homogeneous varieties which are either split or considered over a field admitting some form of resolution of singularities, for example any field of characteristic not p . These reduced Steenrod operations are sufficient for some applications to the theory of quadratic forms.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"9 1","pages":"269-290"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/is011006030jkt162","citationCount":"10","resultStr":"{\"title\":\"Reduced Steenrod operations and resolution of singularities\",\"authors\":\"Olivier Haution\",\"doi\":\"10.1017/is011006030jkt162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a new construction of a weak form of Steenrod operations for Chow groups modulo a prime number p for a certain class of varieties. This class contains projective homogeneous varieties which are either split or considered over a field admitting some form of resolution of singularities, for example any field of characteristic not p . These reduced Steenrod operations are sufficient for some applications to the theory of quadratic forms.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"9 1\",\"pages\":\"269-290\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/is011006030jkt162\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/is011006030jkt162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/is011006030jkt162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文给出了对某类变量以素数p为模的Chow群的Steenrod运算的一个弱形式的新构造。这一类包含射影齐次变异体,这些变异体或被分割或被考虑在一个具有某种奇异分解形式的域上,例如任何非p的特征域。这些简化Steenrod运算对于二次型理论的某些应用是足够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced Steenrod operations and resolution of singularities
We give a new construction of a weak form of Steenrod operations for Chow groups modulo a prime number p for a certain class of varieties. This class contains projective homogeneous varieties which are either split or considered over a field admitting some form of resolution of singularities, for example any field of characteristic not p . These reduced Steenrod operations are sufficient for some applications to the theory of quadratic forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信