{"title":"任意场上6次del Pezzo曲面的导出等价","authors":"Mark Blunk, S. J. Sierra, S. P. Smith","doi":"10.1017/IS010011013JKT134","DOIUrl":null,"url":null,"abstract":"Let S be a degree six del Pezzo surface over an arbitrary field F. Motivated by the first author's classification of all such S up to isomorphism (3) in terms of a separable F-algebra B×Q×F, and by his K-theory isomorphism Kn(S) � Kn(B × Q × F) for n � 0, we prove an equivalence of derived categories D b (cohS) � D b (modA) where A is an explicitly given finite dimensional F-algebra whose semisimple part is B × Q × F.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"8 1","pages":"481-492"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/IS010011013JKT134","citationCount":"8","resultStr":"{\"title\":\"A derived equivalence for a degree 6 del Pezzo surface over an arbitrary field\",\"authors\":\"Mark Blunk, S. J. Sierra, S. P. Smith\",\"doi\":\"10.1017/IS010011013JKT134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let S be a degree six del Pezzo surface over an arbitrary field F. Motivated by the first author's classification of all such S up to isomorphism (3) in terms of a separable F-algebra B×Q×F, and by his K-theory isomorphism Kn(S) � Kn(B × Q × F) for n � 0, we prove an equivalence of derived categories D b (cohS) � D b (modA) where A is an explicitly given finite dimensional F-algebra whose semisimple part is B × Q × F.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"8 1\",\"pages\":\"481-492\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/IS010011013JKT134\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/IS010011013JKT134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/IS010011013JKT134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A derived equivalence for a degree 6 del Pezzo surface over an arbitrary field
Let S be a degree six del Pezzo surface over an arbitrary field F. Motivated by the first author's classification of all such S up to isomorphism (3) in terms of a separable F-algebra B×Q×F, and by his K-theory isomorphism Kn(S) � Kn(B × Q × F) for n � 0, we prove an equivalence of derived categories D b (cohS) � D b (modA) where A is an explicitly given finite dimensional F-algebra whose semisimple part is B × Q × F.